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Аннотация. В рамках гидродинамики средних по-
лей создана модель крупномасштабных течений в кон-
вективных зонах Солнца и подобных Солнцу звезд, 
обобщающая предшествующие модели дифферен-
циального вращения с учетом зависимости течения 
от времени и его отклонения от осевой симметрии. 
Модель реализована в виде программы численных 
расчетов, в которой применяется спектральный ме-
тод разложения по сферическим функциям в комби-
нации с конечно-разностным дифференцированием 
второго порядка точности по времени и радиусу. Пер-
вые расчеты показали близкое соответствие осесим-
метричной части течения данным гелиосейсмологии 
о дифференциальном вращении и меридиональной 
циркуляции. Картина затухающих во времени неосе-
симметричных течений, рассчитанных в модели, нахо-
дится в качественном согласии с наблюдениями волн 
Россби на Солнце. Сформулирована задача дальней-
шего развития теории крупномасштабных течений. 

Ключевые слова: Солнце, звезды, вращение, кон-
векция, турбулентность, численное моделирование. 

Abstract. The paper presents a mean-field model for 
large-scale flows in convection zones of the Sun and 
solar-type stars. The model extends former differential 
rotation models by allowance for variations of the flow 
with time and its deviation from axial symmetry. The 
model is realized as a numerical code, which combines 
the spectral method of decomposition in spherical func-
tions with second-order accurate finite-difference meth-
od in time and radius. First computations show close 
agreement of the axially symmetric part of the computed 
flow with helioseismological detections of differential 
rotation and meridional circulation. Patterns of the time-
decaying non-axisymmetric flow computed with the 
model qualitatively agree with the Rossby waves ob-
served on the Sun. The paper also formulates a problem for 
further development of the large-scale flow theory. 

Keywords: Sun, stars, rotation, convection, turbu-
lence, numerical methods. 

 
 
 

 
 

ВВЕДЕНИЕ 
На Солнце и подобных ему звездах имеются 

крупномасштабные течения, среди которых наиболее 
известны неоднородное (дифференциальное) враще-
ние и меридиональная циркуляция. Имеется возрас-
тание скорости вращения от полюсов к экватору 
приблизительно на 30 % и меридиональное течение 
от экватора к полюсам со скоростью ~10 м/с на по-
верхности Солнца. Крупномасштабные течения иг-
рают важнейшую роль в физике солнечной и звезд-
ной активности [Charbonneau, 2020; Karak, 2023; 
Charbonneau, Sokoloff, 2023]. 

Источником крупномасштабных течений, по всей 
вероятности, является турбулентная конвекция. На это 
прямо указывает гелиосейсмология, согласно кото-
рой области пространства, охваченные как диффе-
ренциальным вращением [Thompson et al., 1996; 
Schou et al., 1998], так и меридиональной циркуля-
цией [Rajaguru, Antia, 2015; Gizon et al., 2020], сов-
падают с зоной конвекции.  

В теории крупномасштабных течений домини-
руют два дополняющих друг друга подхода. Боль-
шинство авторов применяют так называемое прямое 
численное моделирование. Из уравнений гидроди-
намики проводится численный расчет трехмерных 
зависящих от времени течений, включающих как 

конвекцию, так и крупномасштабную составляющую. 
Последняя может быть выделена усреднением по вре-
мени. Воспроизведение наблюдений в рамках такого 
подхода подтвердило бы тот факт, что Солнце под-
чиняется фундаментальным уравнениям. Несмотря 
на впечатляющие успехи в этом направлении, соот-
ветствие наблюдениям все еще не достигнуто (см., 
например, обзоры [Hotta et al., 2023; Käpylä et al., 
2023]).  

Другой подход, получивший название теории 
средних полей, отличается очередностью усредне-
ния и решения уравнений (см., например, [Rüdiger, 
1989; Brandenburg et al., 2023]). Сначала проводится 
усреднение фундаментальных уравнений. Это дает 
уравнения для крупномасштабных полей. В уравне-
ниях присутствуют вклады турбулентности, кото-
рые должны быть выражены через достаточно про-
стые параметры турбулентности и усредненные 
крупномасштабные поля. В таком подходе с необ-
ходимостью используются приближенные методы 
теории турбулентности и не имеющие строгого обос-
нования предположения, но теория средних полей 
выясняет физику крупномасштабных течений.  

Основанные на методе средних полей численные 
модели [Kitchatinov, Olemskoy, 2011, 2012] воспро-
изводят результаты гелиосейсмологии по диффе-
ренциальному вращению и меридиональной цирку-
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ляции и не противоречат наблюдаемым [Barnes, 
2005; Balona, Abedigamba, 2016] зависимостям диф-
ференциального вращения подобных Солнцу звезд 
от скорости вращения и эффективной температуры. 
Эти модели определяют крупномасштабные течения 
в конвективных оболочках звезд в предположении 
их стационарности и осевой симметрии. Имеются, 
впрочем, нестационарные модели крутильных коле-
баний [Pipin, Kosovichev, 2019, 2020]. 

Данная работа обобщает имеющиеся модели 
средних полей с учетом зависимостей крупномас-
штабного течения от времени и долготы. Целесооб-
разность такого обобщения связана с наблюдениями 
на Солнце крупномасштабных вихревых течений 
[Löptien et al., 2018], а также с планируемым объ-
единением моделей дифференциального вращения 
и звездного динамо, где зависимость от времени 
должна присутствовать. На звездах наблюдаются 
крутильные колебания большой амплитуды [Collier 
Cameron, Donati, 2002] и следует ожидать больших 
отклонений от осевой симметрии [Kitchatinov, 2022].  

В разделе 1 дано описание модели. Метод чис-
ленного решения уравнений модели изложен в раз-
деле 2. Результаты первых приложений к Солнцу 
приведены в разделе 3. В Заключении сформули-
рованы основные выводы и задачи на будущее. 

 
1. МОДЕЛЬ 

1.1. Основные уравнения и приближения 

Модель ограничивается случаем медленного 
вращения, когда центробежное ускорение 2R∗Ω  мало 
по сравнению с ускорением свободного падения g, 
и можно пренебречь отклонением в распределе-
ниях плотности ρ, температуры Т и давления 

( )p vP c c T= − ρ  от сферической симметрии (Ω — 

угловая скорость, R∗  — радиус звезды, cp и cv — 
удельные теплоемкости при постоянном давлении и 
объеме; принято уравнение состояния идеального 
газа). Предположение о сферической симметрии, 
однако, не относится к распределению удельной 
энтропии v pln ln ,S c P c= − ρ  малая пространствен-
ная неоднородность которой ответственна за при-
сутствие тепловой конвекции. Градиент температуры 
в конвективных зонах звезд, разумеется, сверхадиа-
батический. Однако относительная величина сверх-
адиабатичности мала: 

( )ad
p

1.r rS T T
c T

∈= ∇ = ∇ − ∇   (1) 

Здесь r — расстояние до центра звезды; 
( ) pad /T c∇ = g  — адиабатический градиент; исполь-
зовались уравнение состояния и условие равновесия 

.P∇ = ρg  Ниже будет дана оценка  (1), подтвер-
ждающая ее малую величину.  

При малой сверхадиабатичности скорости тур-
булентных конвективных u и усредненных крупно-
масштабных v течений малы по сравнению со ско-
ростью звука. Однако большая радиальная неодно-

родность среды не допускает приближения несжи-
маемости. На смену ему приходит приближение 
неупругости, которое, в частности, означает ра-
венство нулю дивергенции плотности импульса 

( )div 0.ρ =v  Физический смысл и обоснование при-
ближения неупругости ясно изложены в работе 
[Lantz, Fan, 1999]. Уравнение для крупномасштаб-
ного течения в этом приближении запишем в виде 

( )

p

1

2 ,

t
P S

c

∂
= − ⋅∇ + ∇ ⋅ +

∂ ρ

′ 
+ × −∇ − ρ 

v v v R

v Ω g
 (2) 

где R — тензор напряжений Рейнольдса, 
,i j i jR u u= −ρ < >  угловые скобки означают усред-

нение, ∇⋅R означает вектор с компонентами ,j i jR∇  
где, как и в дальнейшем, повторение индексов озна-
чает суммирование. Уравнение движения (2) запи-
сано в системе отсчета, вращающейся вместе со звез-
дой с угловой скоростью Ω.  

В приближении неупругости распределения всех 
термодинамических параметров среды за исключе-
нием энтропии считаются постоянными функциями 
координат, не зависящими от времени [Lantz, Fan, 
1999]. Распределения этих параметров в конвектив-
ной зоне заимствованы из модели MESA [Paxton et 
al., 2011] строения и эволюции звезд, как это объяс-
няется в разделе 2. Энтропия является зависимой 
переменной, которая в нашей модели подчиняется 
уравнению переноса тепла 

( )

rad

1

1 .

i ij j
S S T S
t T

q
T T

∂
= − ⋅∇ + ∇ r χ ∇ −

∂ r

− ∇ ⋅ +
rr

v

F
 (3) 

Здесь χ — тензор турбулентной температуропро-
водности; q — источники/стоки тепла (из-за ядер-
ных реакций в пределах конвективной зоны, высво-
бождения гравитационной энергии при сжатии звезды 
и т. п.); Frad — поток тепла из-за лучистой теплопро-
водности, который в принятых приближениях равен 

3
rad

p

16 ,
3

T
c κ
σ

= −
r

F g  (4) 

где σ — постоянная Стефана — Больцмана; κ — 
непрозрачность.  

В уравнениях (2), (3) нужно определить напря-
жения Рейнольдса и теплопроводность как функции 
параметров среды и крупномасштабных полей. 

1.2. Турбулентные коэффициенты переноса 
во вращающейся конвективной зоне 

Ключевым параметром для влияния вращения 
на конвективную турбулентность является число 
Кориолиса 

2 ,∗Ω = τΩ  (5) 

где / uτ =   — характерное время турбулентного 
перемешивания; и — среднеквадратичная скорость. 
Оценим τ для невращающейся конвекции. Для этого 
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будем использовать теорию средней длины перемеши-
вания (см., например, недавний обзор [Joyce, Tayar, 
2023]), которая лежит в основе приближения не-
упругости [Lantz, Fan, 1999], а также определяет 
строение конвективных зон в моделях эволюции 
звезд. Имеем оценку 

2
2 ,

4
g Su

c r
∂

= −
∂p

  (6) 

где MLT pH= α  — длина перемешивания, пропор-

циональная шкале высот давления ( )/ .H P g= ρp  
Турбулентная конвекция переносит поток тепла 

( )2 rad/ 4F L r F∗d = π − : 

T ,ST F
r

∂
−r χ = δ

∂
 (7) 

где L∗  — полный поток через сферическую поверх-
ность радиуса r. Полагая T / 3uχ =   с учетом (6) 
находим 

2

T
p

,
6

g S
c r

∂
c = −

∂
  (8) 

а с учетом (7) получим градиент энтропии 
1/3 2/3

p0
2

6 ,
cS F

r g T
   ∂ δ

− =    ∂ r   

 (9) 

где нижний индекс в обозначении S0 напоминает  
о том, что формула получена без учета вращения. 
Подстановка градиента энтропии (9) в формулу (6) 
дает оценку времени τ: 

1/32
p4

.
3
c T

g F
 ρ

τ =   δ 



 (10) 

Эту оценку используем в определении числа Ко-
риолиса (5). Все параметры в правой части (10) бе-
рем из модели строения звезды (MESA в данной 
статье). Время τ, а с ним и число Кориолиса, зависят 
от радиуса r и возрастают с глубиной в конвектив-
ной зоне.  

Квазилинейная теория турбулентного переноса 
дает для присутствующего в (3) тензора турбулент-
ной температуропроводности 

 

( )
( )T

,

,

,

i jij ij

C

∗

∗
χ

χ = χδ + χ Ω Ω

χ = χ φ Ω

χ = χ φ Ω

T

C

C C

 (11) 

где Cχ — параметр модели (в расчетах данной ста-
тьи 2Cχ = );  /= ΩΩ Ω  — единичный вектор вдоль 

оси вращения. Функции ( )∗φ Ω  и ( )∗φ Ω


 показаны 
на рис. 1. Аналитические выражения для них даны 
в [Kitchatinov et al., 1994]. 

В (11) учтена вызванная вращением анизотропия 
переноса тепла. Величина χ соответствует изотроп-
ной теплопроводности, а χ



 учитывает дополнитель-
ную теплопроводность вдоль оси вращения. Анизот- 

 

Рис. 1. Функции ( )∗φ Ω  и ( )∗φ Ω


 из формулы (11), 

определяющие зависимость турбулентной теплопровод-
ности от скорости вращения 

ропия теплопроводности играет важнейшую роль 
в физике дифференциального вращения. Только с ее 
учетом можно воспроизвести данные гелиосейсмо-
логии в теоретических моделях [Rüdiger et al., 2005]. 
Как видно из рис. 1, анизотропия исчезает в пределе 
медленного вращения 0∗Ω → , как и должно быть. 

Рисунок 1 показывает также уменьшение тепло-
проводности под влиянием вращения. Этот эффект 
вращения отчасти компенсируется возрастанием гра-
диента энтропии, что приводит к увеличению χT (8). 
В стационарной модели [Kitchatinov, Olemskoy, 2011] 
величина S в (8) была одной из зависимых перемен-
ных, т. е. была применена нелинейная модель диф-
фузии. В предлагаемой динамической трехмерной 
модели нелинейная диффузия требует обращения 
матриц большого размера, что значительно cнижает 
скорость численного счета. Поэтому применяется 
линейная диффузия и χT (8) считается заданной 
функцией радиуса r, но эффект возрастания гради-
ента энтропии во вращающейся среде все же учиты-
вается путем замены /S r∂ ∂  в (8) на скорректиро-
ванную величину 

( ) ( )
0 /

,
0.2

S rS
r ∗ ∗

∂ ∂∂
=

∂ φ Ω + φ Ω


 (12) 

где 0 /S r∂ ∂  — градиент для невращающейся среды 
из (9).  

Помимо турбулентной теплопроводности, моде-
лирование крупномасштабных течений требует опре-
деления тензора напряжений Рейнольдса Rij в уравне-
нии (2). Вероятно, Лебединский [1941] первым 
установил, что в дополнение к известному вкладу 
турбулентных вязкостей v

ijR  во вращающейся среде 
с анизотропной турбулентностью присутствуют не-
диссипативные напряжения :ijRΛ  

v ,ij ij ijR R RΛ= +  (13) 

которые могут быть причиной дифференциального 
вращения Солнца. Эффект Лебединского, назван-
ный впоследствии Λ-эффектом, был подробно изу-
чен и подтвержден расчетами в теории средних по-
лей [Rüdiger, 1989]. Его наглядное объяснение можно 
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найти, например, в [Кичатинов, 2005]. Теория Лебе-
динского [1941] соответствует линейному прибли-
жению относительно числа Кориолиса (5). Это число 
действительно мало вблизи поверхности Солнца, но 
растет с глубиной и становится большим вблизи ос-
нования конвективной зоны. Выяснилось, что Λ-эф-
фект, обусловленный анизотропией турбулентности, 
мал ( 21/ ∗Ω ) в глубине конвективной зоны [Kichat-
inov, 1986]. Однако анизотропию может заменить 
неоднородность плотности турбулентной среды, 
которая также дает Λ-эффект, не малый при боль-
ших числах Кориолиса [Kichatinov, 1987]. Тем не ме-
нее, анизотропия важна. Только с учетом анизотро-
пии удается объяснить обнаруженный сейсмологией 
приповерхностный слой неоднородного вращения 
Солнца [Kitiashvili et al., 2023; Кичатинов, 2023]. 
Поэтому Λ-эффект предлагаемой модели 

( ) ( )
( )  ( )  ( )

0

1

i ji j
j i

i j
j i

R r rΛ   = −rΩ Λ × + × −   
 −Λ ⋅Ω Ω × +Ω ×   

Ω r Ω r

r Ω r Ω r

   

  

 (14) 

учитывает как неоднородность, так и анизотропию. 
Здесь 

( )

( )

2
MLT

0 T 0

2
MLT

1 T 1 —

,v

v

∗

∗

α 
L = λ Ω γ 

α 
L = λ Ω γ 

 (15) 

функции радиуса r, p v/c cγ =  — показатель адиабаты; 

/ r=r r  — единичный вектор в радиальном направ-
лении; 

TT 0.8v = χ  (квазилинейная теория турбулент-
ного переноса дает значение 0.8 для числа Прандтля) 
и  

( ) ( ) ( )
( ) ( ) ( )

0 0 0

1 1 1

2 ,

2 .

J I

J I

∗ ∗ ∗

∗ ∗ ∗

λ Ω = Ω + Ω

λ Ω = Ω + Ω
 (16) 

Функции J0 и J1 учитывают вклад неоднородности 
плотности, а I0 и I1 — вклад анизотропии турбулент-
ности. Функции (16) показаны на рис. 2. Их аналити-
ческие выражения даны в [Kitchatinov, Rüdiger, 
2005]. Вклад λ0 в (14) отвечает за перенос углового 
момента вдоль радиуса. Его отрицательная величина 
означает перенос к центру звезды. Вклад λ1 дает пере-
нос углового момента вдоль оси вращения. Его поло-
жительная величина означает перенос от полюсов 
к экватору. Вклад λ0 доминирует при малых ,∗Ω  т. е. 
вблизи поверхности звезды. Возможно, по этой при-
чине скорость вращения вблизи поверхности Солнца 
растет с глубиной [Schou et al., 1998]. 

На рис. 2 показаны также функции fν и fµ зависи-
мостей турбулентных вязкостей от .∗Ω  Как и тур-
булентная теплопроводность, вязкость во враща-
ющейся среде анизотропна. Анизотропия вязкости 
не столь важна для крупномасштабных течений как 
анизотропия теплопроводности, но создает значи-
тельные трудности для численного моделирования. 
Анизотропная вязкость способна трансформировать 

 
Рис. 2. Функции из формул (15)–(17), определяющие 

зависимость Λ-эффекта и эффективных вязкостей от ско-
рости вращения звезды 

тороидальные неосесимметричные течения в полои-
дальные и наоборот. Это приводит к «сцеплению» 
уравнений для полоидальных и тороидальных тече-
ний, что увеличивает размер подлежащих обраще-
нию матриц и понижает скорость численного счета. 
В предлагаемой модели использовалась диссипатив-
ная составляющая напряжений Рейнольдса (13) с изо-
тропными вязкостями 

( )
( ) ( )T T

div ,

, .

v
ij i j j i ijR

v v f v f∗ ∗
ν µ

= ρν ∇ +∇ +ρµd

= Ω µ = Ω

vv v
 (17) 

Функции fv и fµ также показаны на рис. 2. Во враща-
ющейся среде коэффициенты вязкости для направле-
ний вдоль и поперек оси вращения различны. Вяз-
кость v в (17) равна полусумме вязкостей для этих 
двух направлений. Тензор вязкостей для вращаю-
щейся турбулентности был рассчитан в [Kitchatinov 
et al., 1994], где даны аналитические выражения 
для функций ( ) ( )1 2,∗ ∗φ Ω φ Ω  и ( )3 ,∗φ Ω  из которых 

строятся 1 20.5vf = f + f  и 3.fµ = f  

1.3. Скалярные потенциалы течения и гра-
ничные условия 

Ограничение на поле скорости, налагаемое усло-
вием неупругости ( )div 0,ρ =v  позволяет определить 
скорость в терминах двух скалярных потенциалов 
[Chandrasekhar, 1961], 

( )
2

2

2

1 1
sin

1 .
sin

v V WLV
r rr

V W
r r

 ∂ ∂
= − + − r ∂ ∂ϑ ϑ ∂ϕr  
 ∂ ∂

− − r ϑ ∂ ∂ϕ ∂ϑ 

 





ϑ

ϕ

r

 (18) 

Здесь использованы обычные сферические коорди-
наты, ϑ  и ϕ  — единичные векторы в меридио-
нальном и азимутальном направлениях, ( ), ,V r ϑ ϕ  

и ( ), ,W r ϑ ϕ  — потенциалы полоидальной и торои-
дальной составляющих течения соответственно и  

2

2 2

1 1ˆ sin —
sin sin

L ∂ ∂ ∂
= ϑ +

ϑ ∂ϑ ∂ϑ ϑ ∂ϕ
 (19) 

угловая часть оператора Лапласа. 
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Линии тока тороидального течения лежат на сфе-
рических поверхностях постоянного радиуса r. По-
лоидальное течение имеет тороидальный векторный 
потенциал. В предлагаемой модели уравнение (2) 
преобразовано к уравнениям для скалярных потен-
циалов. Радиальная составляющая ротора уравнения 
(2) дает уравнение для тороидального потенциала 
W. Радиальная составляющая уравнения (2), к кото-
рому взятие ротора применено дважды, дает урав-
нение для полоидального течения. Такая процедура 
получения уравнений для крупномасштабного тече-
ния отличается от используемой в теории динамо, 
где уравнение для полоидального магнитного поля 
дает радиальная составляющая уравнения индукции 
без применения двойного ротора [Краузе, Рэдлер, 
1984]. Отличие связано с тем, что соленоидальность 
магнитного поля является фундаментальным зако-
ном, а соленоидальность плотности импульса — 
следствием приближения неупругости. Взятие ротора 
от уравнения движения «отфильтровывает» потен-
циальные силы. Уравнения для крупномасштабных 
течений в терминах скалярных потенциалов довольно 
громоздки. Они выписаны в Приложении. 

Для однозначного решения уравнений требуются 
граничные условия. Естественным условием для круп-
номасштабного течения является обращение в ноль 
недиагональных составляющих тензора напряжений 

0r rR Rϕ ϑ= =  на нижней (r1) и верхней (r2) границах 
области моделирования. Нижняя граница помеща-
ется в основании конвективной зоны, а верхняя — 
на малой глубине под поверхностью звезды (в пред-
лагаемой модели 2 0.97 ,r R∗=  если не оговорено 
другое значение). Такие граничные условия требуют 
обращения в ноль горизонтальной составляющей 
поверхностной плотности внешних сил и означают, 
что крупномасштабные течения определяются про-
цессами в конвективной зоне, а не внешним воздей-
ствием. Эквивалентная запись граничных условий 
в виде 

( )

( )

sin
0,

sin
0

rr

r r

RR

R R

ϕϑ

ϕ ϑ

∂ ϑ∂
− =

∂ϕ ∂ϑ
∂ ∂ ϑ

+ =
∂ϕ ∂ϑ

 (20) 

приводит с учетом формул (14), (17) и (18) к усло-
виям для скалярных потенциалов 

( )
( )

2

3
0 1

2

cos cos / 3 2cos / 5 0,

2 0,

rU W r

Q rD

− +W ×

 × ϑΛ + ϑ + ϑ Λ = 
+ =

 (21) 

где U, Q и D — новые зависимые переменные, 

( )
2

1, , .
LVW V QU Q D

r r rr
∂ ∂ ∂

= = = − −
∂ r ∂ ∂r



 (22) 

Целесообразность введения новых зависимых пе-
ременных связана с численным методом модели   
и объяснена ниже. Используются также «закрытые» 
граничные условия vr=0, что означает V=0 на гра-
ницах.  

На нижней границе в конвективную зону по-
ступает сферически-симметричный поток тепла, 

( ) ( )conv
1 1 ,rF r F r= δ  где  

( ) ( )( )

( )

conv 2
Т cos

1sin cos .

r
SF T C
r

SC
r

∗ ∗
c

∗
c

∂= −rc  φ Ω + φ Ω ϑ − ∂
∂ − φ Ω ϑ ϑ ∂ϑ

C

C

 (23) 
На поверхности происходит излучение в окружаю-
щее пространство: 

( ) ( )2conv
2 2

p2

1 4 .
4r

L r SF r
cr

 
= +  p  

 (24) 

Здесь предполагается, что тонкий слой от r2 до по-
верхности звезды является идеальным теплообмен-
ником [Kitchatinov, Olemskoy, 2011]. 

1.4. Разложения по сферическим функциям 
и сохранение углового момента 

Граничные условия (20) обеспечивают сохране-
ние углового момента 

( )2

1

2 2

0 0
sin .

r

r
r d d dr

π π
= r ϑ × ϕ ϑ∫ ∫ ∫M r v  (25) 

Однако формулировка закона сохранения для вра-
щающейся системы координат имеет свою специ-
фику. Рассмотрим вращающуюся декартову систему 
координат с осью Z вдоль оси вращения и плоско-
стью (x, y) в плоскости экватора; долгота φ в (25) 
отсчитывается от оси X. Продифференцируем угло-
вой момент (25) по времени и подставим / t∂ ∂v  из 
уравнения (2). Интегрируя по частям, найдем 

0, , .z x y y xM M M M M= = Ω = −Ω    (26) 

Mz и абсолютная величина нормальной к оси вращения 
составляющей углового момента 2 2

x yM M M⊥ = +  не 
меняются со временем. Эти обстоятельства можно 
использовать для контроля численных решений.  

Формулы для углового момента упрощаются с 
использованием разложений по сферическим функ-
циям. В представлении (18) для скорости, а также во 
многих местах уравнений для потенциалов течения 
(см. Приложение) присутствует оператор L  (19). 
Поэтому удобно использовать разложения по соб-
ственным функциям ( ), ,l mY ϑ ϕ  этого оператора 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

,

0
,

,

, 2sin cos для 0,

, 2 cos для 0,

, 2cos cos для 0,

m
l m l

l m l

m
l m l

Y m P m

Y P m

Y m P m

ϑ ϕ = ϕ ϑ <

ϑ ϕ = ϑ =

ϑ ϕ = ϕ ϑ >

 (27) 

где черта сверху означает нормированную функцию, 
в частности, для нормированных присоединенных 
полиномов Лежандра 

( )( )
2

0
, cos sin 1.m m

l lP P d
π

ϑ ϑ ϑ =∫   

Для потенциала W тороидального течения ис-
пользуем разложение 



Л.Л. Кичатинов L.L. Kitchatinov 

10 

( ) ( ) ( )max

min , ,, , ,M l
l m l mm M l l

W t W r t Y
=− =

= ϑ ϕ∑ ∑r  (28) 

и аналогично для остальных потенциалов течения 
и энтропии. Здесь minl m=  для энтропии и 

( )min max , 1l m=  для потенциалов течения, 

( )max max , 1 1,l L m= + −  M и L определяют число 
гармоник в разложении (28) и являются параметрами 
модели. Особенность формулы (28) заключается в том, 
что максимальные азимутальное M и меридиональ-
ное L волновые числа не зависят друг от друга и могут 
быть произвольными. Это обеспечивает гибкость 
модели, которую можно использовать не только для 
нелинейных трехмерных численных экспериментов, 
но также для расчета осесимметричных течений 
(M=0) и для анализа их устойчивости к малым воз-
мущениям с небольшими m.  

Подставляя (28) в (25) убеждаемся, что только 
моды с l=1 дают вклад в угловой момент: 

( )
( ) ( ) ( )( )2

1

2
1,1 1, 1 1,0

, ,

8 , , .
3

x y z

r

r

M M M

r W r W r W r d r−

=

π
= − r −∫

 (29) 

Разложения (28) приводят также к полезной 
формуле для полной кинетической энергии 

2 3
k / 2,E v d= ρ∫ ρ  

( )
( ) ( ) ( ) ( )2

1

,

2 2 2
, , ,2

2 1

1
,

l m

r

l m l m l mr

E l l

l l
V r Q r W r dr

r

= π + ×

+ 
× +r +r r 

∑

∫

k

 (30) 

которая показывает, что кинетическая энергия явля-
ется не только суперпозицией независимых вкладов 
полоидальной и тороидальной составляющих тече-
ния, но и распадается на вклады отдельных гармо-
ник в разложении этих течений по сферическим 
функциям. Необходимо отметить, что такая супер-
позиция выполняется глобально для полной энер-
гии, но не имеет места для локальной плотности 
энергии.  

Формулы (29) и (30) можно использовать для ди-
агностики численных решений. 

 
2. ЧИСЛЕННЫЙ МЕТОД 

Разложения (28) по сферическим функциям при-
водят к системе уравнений в частных производных 
относительно двух независимых переменным t и r. 
Уравнения решались численно конечно-разностными 
методами.  

В задаче присутствуют тонкие пограничные слои 
Экмана [Durney, 1989]. Поэтому конечно-разностная 
сетка по радиусу должна быть плотнее у границ. 
Сетка из N узлов включает границы r1, r2 и проме-
жуточные узлы 

( )2 1 2 1
1 3 / 2cos ,
2 2

2 1.

j
jr r r r r
N

j N

 −  = + − − π  −  
≤ ≤ −

 (31) 

Узлы представляют собой линейное отображе-
ние нулей полиномов Чебышева в интервале [–1, 1] 

на [r1, r2]. Такой выбор конечно-разностной сетки 
хорошо зарекомендовал себя в предыдущих двух-
мерных моделях [Kitchatinov, Olemskoy, 2011, 2012]. 
Он также позволяет применять метод квадратур 
Гаусса—Чебышева [Press et al., 1992] для вычисле-
ния интегралов (29), (30) с высокой точностью. Ко-
эффициенты уравнений зависят от параметров стро-
ения звезды, которые брались из модели MESA 
[Paxton et al., 2011]. Для пересчета результатов MESA 
к узлам сетки (31) применена интерполяция кубиче-
скими сплайнами. Для упрощения конечно-разно-
стного вычисления производных введены новые за-
висимые переменные U, Q, и D (22). Тогда уравне-
ния включают лишь пространственные производные 
первого порядка и запись уравнений для средних 
точек между двумя соседними узлами обеспечивает 
точность второго порядка по радиусу.  

Модель имеет также второй порядок точности по 
времени. Для расчета всех вкладов в уравнения, кроме 
диффузионных (вязкость и теплопроводность), при-
менялся метод Рунге — Кутта второго порядка. Диф-
фузия учтена методом Кранка—Николсона (Krank—
Nicolson [Press et al., 1992]). Точнее, явное представ-
ление диффузии входило с весом (1–q), а неявное — 
с весом q, где q — параметр модели, 0.5 1q≤ ≤  
(ограничение снизу следует из требования численной 
устойчивости). В предлагаемой модели q=0.501, если 
не оговорено другое значение. Такая величина q обес-
печивает численную устойчивость, но близко к q=0.5 
схемы Кранка — Николсона второго порядка точ-
ности. 

Шаг по времени принят равным одной сотой пе-
риода вращения, rot0.01 .t P∆ =  Число узлов по радиусу 
N=31 обеспечивало хорошую точность расчетов для 
Солнца с периодом вращения rot 25.4 сут;P =  увели-
чение N не приводило к видимому изменению резуль-
татов. Присутствие пограничных слоев Экмана тре-
бует изменения N пропорционально 1/ 2

rotP−  для мень-
ших периодов вращения. 

 
3. ПЕРВЫЕ РЕЗУЛЬТАТЫ 

Модель MESA звезды с массой Солнца и метал-
личностью Z=0.02 дает для возраста 4.6 миллиарда 
лет радиус R*=1.003R


 и светимость L*=0.999R


 

Строение этой звезды было принято в расчетах для 
Солнца. 

На рис. 3 показано относительное отклонение  
(1) от адиабатичности в пределах конвективной зоны. 
Видно, что в соответствии с приближением неупру-
гости [Lantz, Fan, 1999] радиальная неоднородность 
термодинамических параметров во всей конвектив-
ной зоне за исключением тонкого приповерхностного 
слоя близка к адиабате. 

3.1. Релаксация к осесимметричному ста-
ционарному состоянию 

Были проведены расчеты для начального состоя-
ния, в котором течение отсутствовало (v=0), а распре-
деление энтропии (12) не зависело от долготы. Мак-
симальные волновые числа в разложениях (25) были 
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Рис. 3. Относительная величина отклонения от адиа-

батической стратификации в конвективной зоне Солнца 
согласно формулам (1) и (9) 

L=21 и M=5, т. е. расчеты допускали отклонения 
от осевой симметрии.  

Поскольку в начальном состоянии угловой мо-
мент (25) во вращающейся системе отсчета равен 
нулю, то согласно правилам сохранения (26), это ра-
венство должно выполняться и в последующем. Од-
нако наш численный метод не является консерва-
тивным относительно углового момента. Поэтому 
равенства (26) нарушались в процессе численного 
счета, но величины Mz и M⊥ не превышали 10–4 от про-
изведения M0=IΩ момента инерции I конвективной 
зоны на угловую скорость. 

Со временем возникает и усиливается течение 
из-за Λ-эффекта (14) и бароклинного источника по-
лоидального течения (см. Приложение). Из-за анизо-
тропии теплопроводности (11), появляется зависи-
мость энтропии от широты. Однако и течение, и рас-
пределение энтропии сохраняли осевую симметрию 
начального состояния. Это означает, что «числен-
ные шумы» из-за конечной точности численных 
расчетов не приводят к неосесимметричным возму-
щениям в предлагаемой модели. 

За время порядка 2 /R v∗  (~10 лет) устанавливается 
стационарное состояние, симметричное относительно 
плоскости экватора. Результаты показаны на рис. 4–6. 
Согласие с наблюдениями несколько ухудшилось 
по сравнению со стационарной осесимметричной мо-
делью [Kitchatinov, Olemskoy, 2011], вероятно, в ре-
зультате упрощений, перечисленных в разделе 1, но 
все же остается довольно близким. На рис. 4 показано 
полученное в модели дифференциальное вращение. 
Здесь для сравнения с наблюдениями к рассчитан-
ной скорости вращения добавлена угловая скорость 
Ω системы отсчета. Имеется близкое согласие с до-
плеровскими измерениями вращения поверхности 
Солнца [Snodgrass, Ulrich, 1990] и с данными ге-
лиосейсмологии. Меридиональная циркуляция (рис. 5) 
также согласуется с сейсмологическими измерениями 
[Rajaguru, Antia, 2015; Gizon et al., 2020]. 

На рис. 6 показано различие температуры 
p/T T S cδ = δ  между полюсами и экватором в зависи-

мости от радиуса r. Дифференциальная температура 
важна для термовращательного равновесия в основ-
ном объеме конвективной зоны и возбуждения мери- 

 
Рис. 4. Дифференциальное вращение в асимптотиче-

ском осесимметричном состоянии: слева — изолинии 
угловой скорости; справа — дифференциальное вращение 
на поверхности по результатам расчетов (сплошная линия) 
и доплеровских измерений [Snodgrass, Ulrich, 1990] (штри-
ховая линия) 

 
Рис. 5. Линии тока (слева) меридиональной циркуля-

ции по результатам модели. Сплошная и пунктирная ли-
нии показывают соответственно циркуляцию по часовой 
стрелке и против. Справа — скорость меридионального 
течения на поверхности (сплошная линия) и у дна кон-
вективной зоны (штриховая) 

диональной циркуляции вблизи ее границ [Hazra et 
al., 2023]. Необходимо отметить, что дифференци-
альная температура 1.4 KTδ .  на верхней границе 
области моделирования не равна ее значению на фото-
сфере. Если слой от верней границы до поверхности 
звезды действительно близок по своим свойствам к 
идеальному теплообменнику, как это предполагает-
ся в модели, то равенство значений на границе и 
поверхности имеет место для возмущений энтропии 

/ .S T Tδ ∝ δ  Тогда из-за быстрого падения темпера-
туры к поверхности дифференциальная температура 
на поверхности составляет «неизмеримые» сотые 
доли градуса. 

3.2. Динамика неосесимметричных возму-
щений 

Были проведены расчеты, начальным состоянием 
которых было стационарное осесимметричное реше- 
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Рис. 6. Распределение энтропии в стационарном осе-

симметричном состоянии. Слева — изэнтропийные ли-
нии, справа — так называемая дифференциальная темпе-
ратура — разница температуры между полюсами и эква-
тором в зависимости от радиуса 

ние (см. рис. 4–6), к которому добавлены неосе-
симметричные возмущения тороидального течения 
с 1 5m≤ ≤  и амплитудой ~0.1 от осесимметричной 
составляющей. Со временем из-за нелинейных вза-
имодействий появляются неосесимметричные поло-
идальные течения и возмущения энтропии. 

В случае затухания отклонений от осевой сим-
метрии такие расчеты могли бы показать собствен-
ные моды уравнений модели с конечными m. Расчеты, 
однако, обнаружили неосесимметричную неустой-
чивость, указывающую на внутреннее противоречие 
гидродинамики средних полей в применениях к кон-
вективным оболочкам звезд. Неосесимметричные 
возмущения первоначально растут со временем. Затем 
рост останавливается по достижении некоторой ам-
плитуды нерегулярно изменяющихся во времени 
возмущений. При этом осесимметричная часть реше-
ния также приобретает нерегулярно изменяющуюся 
во времени составляющую. Данная неустойчивость 
не является новой [Rüdiger, Spahn, 1992; Tuominen et 
al., 1994]. По всей вероятности, она является тепло-
вой конвекцией. Об этом говорит то обстоятельство, 
что неустойчивость выключается, если положить 
vr=0 в уравнении для энтропии. В гидродинамике 
средних полей предполагается, что влияние турбу-
лентной конвекции полностью учтено введением эф-
фективных коэффициентов переноса. Однако присут-
ствие конвективной неустойчивости говорит о непо-
следовательности такого учета: коэффициенты пе-
реноса не заменяют конвекцию.  

Обсуждаемая неустойчивость обнаруживалась и 
в осесимметричной стационарной модели дифферен-
циального вращения [Kitchatinov, Olemskoy, 2011]. 
Для ее устранения требовалась достаточно большая 
величина отношения MLT p/ Hα =   длины переме-
шивания к шкале высот, причем, чем ближе верхняя 
граница r2 области вычислений к поверхности звезды, 
тем большая величина αMLT требуется для устойчи-
вости. Это говорит о том, что неустойчивость воз-
никает вблизи поверхности, что отмечали также 
[Tuominen et al., 1994]. Это объясняется возрастани-

ем сверхадиабатичности к поверхности звезды (см. 
рис. 3). Увеличение длины перемешивания уменьшает 
градиент энтропии (9) и увеличивает диффузию (8). 
Поэтому увеличение αMLT устраняет неустойчивость. 
Заметим, что уменьшение длины перемешивания у дна 
конвективной зоны к неустойчивости не приводит 
[Кичатинов, Непомнящих, 2017]. В осесимметрич-
ных моделях, αMLT=2.2 обеспечивало устойчивость 
для 2 0.97 .r R∗=  Эта величина αMLT используется   
и в данной статье. Поэтому модель устойчива к осе-
симметричным возмущениям (см. рис. 4–6). Однако 
во вращающейся конвекции доминируют неосесим-
метричные моды (бананообразные ячейки [Glatzmaier, 
Gilman, 1981]). Поэтому неустойчивость относительно 
неосесимметричных возмущений сохраняется.  

Возможно, обсуждаемое противоречие в гидроди-
намике средних полей может быть устранено учетом 
зависимости αMLT от радиуса, следующей, например, 
из минимизации суммарной (кинетической плюс теп-
ловой) энергии конвективной зоны. Однако такая 
задача должна быть темой отдельной работы. В дан-
ной статье применен искусственный метод исклю-
чения тепловой конвекции путем использования 
фиксированного стационарного распределения эн-
тропии, полученного в осесимметричной модели 
(см. рис. 6). Тогда начальные неосесимметричные 
возмущения затухают со временем. 

Такое затухание хорошо видно на рис. 7, где по-
казана зависимость от времени кинетической энер-
гии возмущений для различных m отдельно для то-
роидальной и полоидальной составляющих течения. 
По мере затухания неосесимметричных возмущений 
их нелинейное взаимодействие становится слабым. 
Поскольку коэффициенты уравнений модели не за-
висят от долготы, моды с различными m становятся 
независимыми. По истечении достаточного времени 
для каждого m остается лишь наиболее медленно 
затухающая долгоживущая собственная мода урав-
нений модели. При этом зависимость энергии от вре-
мени имеет вид ( )exp 2 / ,mt− t  где τm — время жизни 
собственной моды. Такие зависимости от времени об-
разуют прямые линии на рис. 7. Для установления 
экспоненциальных зависимостей требуется доста-
точно длительное время, чтобы из смеси собствен-
ных мод в начальном условии выжили лишь наибо-
лее долгоживущие. Параметры собственных мод 
приведены в таблице. 

Параметры неосесимметричных собственных мод круп-
номасштабных течений. Приведены времена жизни τm, 
отношение энергий тороидальной составляющей течения 
к полоидальной Etor /Epol и индексы симметрии для эквато-
риально-симметричных (S) и антисимметричных (A) мод 

m τm, годы Etor /Epol Симметрия 
1 0.754 45.9 S 
2 4.64 21200 A 
3 1.22 2080 A 
4 2.30 1.00 S 
5 0.970 1.24 S 

Наблюдения последних лет обнаружили на Солнце 
r-моды глобальных колебаний [Löptien et al., 2018; 
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Рис. 7. Кинетическая энергия (30) тороидальных (вверху) 

и полоидальных (внизу) составляющих течения с различ-
ными азимутальными волновыми числами m. Энергия 
представлена в единицах 1033 эрг 

Mandal et al., 2021; Mandal, Hanasoge, 2024] — дрей-
фующие по долготе горизонтальные вихри [Saio, 
1982]. Отличительным признаком r-мод, в частности, 
является малая величина радиальных смещений. Как 
видно из таблицы, относительно малая величина ра-
диальных (полоидальных) течений получена для m 
от 1 до 3. Структура течений для собственных мод 
с m=2 и 3 показана на рис. 8, 9. 

Тороидальные вихри (см. рис. 8, 9) центрированы 
на экваторе и имеют так называемую секторальную 
структуру, т. е. не имеют узлов со сменой знака  
по широте. Это качественно согласуется с наблюде-
ниями Löptien et al. [2018]. Однако ввиду обсуждавше-
гося выше противоречия результаты данной статьи 
для неосесимметричных течений нужно считать 
предварительными. Поэтому воздержимся от более 
детального сравнения с наблюдениями. 
 

ЗАКЛЮЧЕНИЕ 
Целью работы было обобщение стационарных 

моделей дифференциального вращения с учетом 
зависимости от времени и отклонения от цилиндриче-
ской симметрии относительно оси вращения. Целесо-
образность такой работы определяется наблюдениями 
вихревых крупномасштабных течений на Солнце,    
а также планами объединения с моделями динамо. 

Новая модель крупномасштабных течений в кон-
вективных оболочках Солнца и звезд развита в рам-
ках гидродинамики средних полей и реализована в 
виде программы численного решения уравнений 
гидродинамики и переноса тепла. Численная модель 
использует спектральный метод разложения по го-
ризонтальным координатам в комбинации с конечно-
разностным дифференцированием второго порядка 
точности по времени и радиусу. Это дает надежный 
инструмент для будущих теоретических исследований 

 
Рис. 8. Картина течения собственной моды с азимуталь-

ным волновым числом m=2 для радиуса r=0.9R∗. Сплош-
ные (пунктирные) линии — линии тока тороидального тече-
ния с циркуляцией по (против) часовой стрелки. Цветом 
показана радиальная скорость. Амплитуда скорости 1 м/с 
затухающей во времени моды определяется нормировкой 

 
Рис. 9. То же, что и на рис. 8, но для собственной моды 

с m=2 

Солнца и звезд с внешними конвективными оболоч-
ками. 

Первые расчеты показали, что осесимметричная 
составляющая течения близко воспроизводит уста-
новленную гелиосейсмологией картину дифферен-
циального вращения и меридиональной циркуляции. 
В то же время расчеты неосесимметричных течений 
обнажили внутреннее противоречие гидродинамики 
средних полей в применении к конвективным зонам 
звезд, требующее пересмотра теории длины пере-
мешивания. Развитая модель может и должна быть 
использована для устранения этого противоречия. 
Тем не менее, первые расчеты неосесимметричных 
течений показали по меньшей мере качественное 
соответствие наблюдениям крупномасштабных волн 
Россби на Солнце.  

Работа выполнена при финансовой поддержке 
Министерства науки и высшего образования РФ. 
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ПРИЛОЖЕНИЕ 

УРАВНЕНИЯ ДЛЯ ТОРОИДАЛЬНОЙ 
И ПОЛОИДАЛЬНОЙ СОСТАВЛЯЮЩИХ ТЕЧЕНИЯ 

В символьном виде уравнение для тороидальной составляющей течения можно записать как 
rr⋅(∇×Уравнение (2)). В представлении через скалярные потенциалы течения (18) и новые зависимые пере-
менные (22) получим 
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Два первых слагаемых в правой части дают вклад турбулентной вязкости. Следующее слагаемое в фигурных 
скобках учитывает Λ-эффект, далее в фигурных скобках — сила Кориолиса, остальная часть уравнения — вклад 
нелинейности. Заметим, что при использовании новых зависимых переменных (22) в уравнении присут-
ствуют производные лишь первого порядка по радиусу, для чего новые переменные и были введены. 

Символьная запись уравнения для полоидального течения rr⋅[∇×(∇×Уравнение (2)] сложнее, чем для то-
роидального. Соответственно, и уравнение в потенциалах получается более громоздким: 
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Здесь 
( ) ( ) ˆ1 2vD d v LVF Q

r r dr r
 ∂ rr

= + +  r ∂ rr  
 — еще одна зависимая переменная в дополнение к (22). Вклад 

энтропии учитывает бароклинный источник полоидального течения. 

 


