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Abstract. The paper presents a mean-field model for 
large-scale flows in convection zones of the Sun and 
solar-type stars. The model extends former differential 
rotation models by allowance for variations of the flow 
with time and its deviation from axial symmetry. The 
model is realized as a numerical code, which combines 
the spectral method of decomposition in spherical func-
tions with second-order accurate finite-difference meth-
od for time and radius. First computations show close 
agreement of the axially symmetric part of the computed 

flow with helioseismological detections of differential 
rotation and meridional circulation. Patterns of the time-
decaying non-axisymmetric flow computed with the 
model qualitatively agree with the Rossby waves ob-
served on the Sun. The paper also formulates a problem 
for further development of the large-scale flow theory. 

Keywords: Sun, stars, rotation, convection, turbu-
lence, numerical methods. 

 
 

INTRODUCTION 
The Sun and solar-type stars host large-scale flows, 

inhomogeneous (differential) rotation and meridional 
circulation being the most known examples. The rota-
tion rate increases from poles to the equator by about 
30% on the Sun, and the surface meridional flow from 
the equator to the poles has an amplitude ~10 m/s. The 
large-scale flows are important for the solar and stellar 
dynamos [Charbonneau, 2020; Karak, 2023; Charbon-
neau, Sokoloff, 2023]. 

The large-scale flows are, by all probabilities, driven 
by turbulent convection. This is clearly indicated by 
spatial coincidence of the regions occupied by the dif-
ferential rotation [Thompson et al., 1996; Schou et al., 
1998] and meridional flow [Rajaguru, Antia, 2015; Gi-
zon et al., 2020] with the convection zone as revealed 
by helioseismology.  

The large-scale flow theory is dominated by two 
complementary approaches. A majority of studies apply 
the so-called direct numerical simulations. In this ap-
proach, three-dimensional time-dependent flows com-
prising both convection and large-scale parts are com-
puted from the equations of hydrodynamics. The large-
scale flow can be extracted by time averaging. A repro-
duction of observations with such an approach would 
confirm the fact that the Sun obeys fundamental equa-
tions. In spite of impressive progress in this direction, a 
correspondence to observations is still not achieved 
(see, e.g., reviews by Hotta et al. [2023] and Käpylä et 
al. [2023]). 

Another approach, named “mean-field theory”, dif-
fers by sequence of averaging and equation solving (see, 
e.g., Rüdiger [1989], Brandenburg et al. [2023]). Aver-
aging of fundamental equations is done first. This gives 
equations for large-scale fields. The equations include 
contributions of turbulence, which should be expressed 
in terms of sufficiently simple turbulence parameters 
and the averaged large-scale fields. Approximate meth-

ods of turbulence theory and not well justified assump-
tions are unavoidable in this approach, but the mean-
field theory clarifies the physics of large-scale flows.  

The numerical models based on the mean-field theo-
ry [Kitchatinov, Olemskoy, 2011, 2012] reproduce the 
differential rotation and meridional flow detected by 
helioseismology and do not contradict the observed 
[Barnes, 2005; Balona, Abedigamba, 2016] dependenc-
es of the differential rotation on rotation rate and tem-
perature of solar-type stars. The models compute the 
large-scale flows in stellar convective envelopes assum-
ing their axial symmetry and independence of time. 
There are, however, dynamical models of torsional os-
cillations [Pipin, Kosovichev, 2019, 2020]. 

This paper extends the mean-field models with al-
lowance for the large-scale flow dependence on time 
and longitude. Observations of large-scale vortical 
flows on the Sun [Löptien et al., 2018] justify the expe-
diency of such an extension. A planned unification of 
differential rotation and stellar dynamo models also 
demands allowance for the variability with time. Stellar 
torsional oscillations can be strong [Collier Cameron, 
Donati, 2002] and large deviations from axial symmetry 
can be expected [Kitchatinov, 2022].  

The model design is described in Section 1. Section 
2 explains the numerical method used in the model. 
Results of the first applications to the Sun are given in 
Section 3. Main results and a problem for future are 
summarized in Conclusions. 

 
1. MODEL 

1.1. Basic equations and approximations 

The model confines to the case of slow rotation, 
where the centrifugal acceleration 2R∗Ω  is small com-
pared to the gravity g and deviation from spherical 
symmetry in distributions of density ρ, temperature Т, 
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and pressure ( )p vP c c T= − ρ  can be neglected (Ω is the 

angular velocity, R∗  is the stellar radius, cp and cv are 
the specific heat capacity at constant pressure and vol-
ume; perfect gas equation of state is assumed). The 
spherical symmetry assumption does not, however, refer 
to the specific entropy v pln ln ,S c P c= − ρ  whose small 
spatial inhomogeneity is responsible for thermal con-
vection. The temperature gradient in stellar convection 
zones is superadiabatic, but the relative value of super-
adibaticity, 

( )ad
p

1.r rS T T
c T

∈= ∇ = ∇ − ∇   (1) 

is small. In this equation, r is the distance to the star’s 
center, ( ) pad /T c∇ = g  is the adiabatic gradient, the 
equation of state and the hydrostatic equilibrium condi-
tion, P∇ = ρg were used. An estimation of  (1) con-
firming its small value will be given below.  

At small superadiabaticity, the velocity u of turbu-
lent convection and the mean large-scale flow velocity v 
are both small compared to the sound velocity. The 
large radial inhomogeneity of the fluid does not, how-
ever, permit the incompressibility approximation. It is 
replaced by the anelastic approximation, which in par-
ticular means the divergence-free of the momentum 
density, ( )div 0.ρ =v  The physics of anelastic approxi-
mation and its justification are clearly explained by 
Lantz and Fan [1999]. The large-scale flow equation in 
this approximation can be written as follows 

( )

p

1

2 .

t
P S

c

∂
= − ⋅∇ + ∇ ⋅ +

∂ ρ

′ 
+ × −∇ − ρ 

v v v R

v Ω g
 (2) 

In this equation, R is the Reynolds stress tensor, 
,i j i jR u u= −ρ < >  where the angular brackets mean 

averaging, and ∇⋅R is a vector with components ,j i jR∇  
where the repetition of subscripts from here on signifies 
summation. Equation (2) refers to the reference frame 
co-rotating with a star with angular velocity Ω.  

In the anelastic approximation, all thermodynamic 
parameters except entropy are considered to be steady 
functions of coordinates [Lantz, Fan, 1999]. Distribu-
tion of these parameters within the convection zone is 
taken from the model MESA [Paxton et al., 2011] of 
stellar structure and evolution as it is explained in Sec-
tion 2 below. Entropy is a dependent variable in our 
model. It obeys the heat transport equation  

( )

rad

1

1 ,

i ij j
S S T S
t T

q
T T

∂
= − ⋅∇ + ∇ r χ ∇ −

∂ r

− ∇ ⋅ +
rr

v

F
 (3) 

where χ is the thermal diffusivity tensor, q stands for 
the sources/sinks of heat (due to nuclear reactions with-
in the convection zone, gravitational energy release by 

stellar compression and others), and Frad is the radiative 
heat flux. With the accepted approximations, it reads  

3
rad

p

16 ,
3

T
c κ
σ

= −
r

F g  (4) 

where σ is the Stefan — Boltzmann constant and κ is the 
opacity.  

The Reynolds stress and thermal diffusivity in Equa-
tions (2) and (3) should be expressed in terms of the 
fluid parameters and large-scale fields.  

1.2. Turbulent transport coefficients in ro-
tating convection zone 

The key parameter for the rotational influence on 
convective turbulence is the Coriolis number,  

2 ,∗Ω = τΩ  (5) 
where 𝜏𝜏 = ℓ/𝑢𝑢 is the characteristic time of turbulent 
mixing and и is the root-mean-square velocity. Let us 
estimate τ for non-rotating convection. This can be done 
with the mixing-length theory (see, e.g., the recent re-
view by Joyce and Tayar [2023]), on which the compu-
tations of convection zone structure in stellar evolution 
models and the anelastic approximation [Lantz, Fan, 
1999] are based. The mixing-length estimation for the 
RMS velocity reads 

 
2

2

p

,
4

g Su
c r

∂
= −

∂
  (6) 

where MLT pH= α is the mixing-length proportional to 

the pressure scale height ( )/ .H P g= ρp  The turbulent 
convection transports the heat flux 

( )2 rad/ 4F L r F∗d = π − : 

T ,ST F
r

∂
−r χ = δ

∂
 (7) 

where L∗  is the total flux through the sphere of radius r. 
With allowance for Equation (6), the thermal diffusivity 

T / 3uχ =  can be written as 
2

T
p

.
6

g S
c r

∂
c = −

∂
  (8) 

On using Equation (7), this leads to the entropy gradient 
1/3 2/3

p0
2

6 ,
cS F

r g T
   ∂ δ

− =    ∂ r   

 (9) 

where the subscript in S0 reminds that the equation does 
not account for rotation. Substitution of entropy gradient 
(9) into Equation (6) leads to an estimation of the con-
vective turnover time: 

 
1/32

p4
.

3
c T

g F
 ρ

τ =   δ 



 (10) 

This estimation is used to define Coriolis number 
(5). All the parameters in the right-hand side of (10) are 
taken from a stellar structure model (MESA in this pa-
per). The convective time τ depends on the radius r and 
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increases with depth in the convection zone. Therefore, 
the Coriolis number also does so.  

The quasilinear theory of turbulent transport gives 
for the thermal diffusivity tensor of Equation (3) the 
following expression 

 

( )
( )T

,

,

,

i jij ij

C

∗

∗
χ

χ = χδ + χ Ω Ω

χ = χ φ Ω

χ = χ φ Ω

T

C

C C

 (11) 

where Cχ is the model parameter ( 2Cχ =  in this paper) 

and  /= ΩΩ Ω  is the unit vector along the rotation axis. 
The functions ( )∗φ Ω  and ( )∗φ Ω



 are shown in Figure 1. 
Analytical expressions for these functions are given in 
Kitchatinov et al. [1994]. Equation (11) accounts for the 
rotationally induced anisotropy of turbulent heat 
transport. χ is the isotropic part of the thermal diffusion 
and χ



 is the extra diffusivity along the rotation axis. 
Anisotropy of thermal diffusion is essential for differential 
rotation physics. Reproducing the results of helioseis-
mology with theoretical models is only possible with al-
lowance for this anisotropy [Rüdiger et al., 2005]. It can be 
seen in Figure 1 that the anisotropy vanishes in the slow 
rotation limit, 0∗Ω → , as should be the case. 

Figure 1 also shows that rotation suppresses thermal 
diffusion. This rotational effect is partly compensated 
by an increase in the entropy gradient which leads to an 
increase in χT (8). In the steady model by Kitchatinov 
and Olemskoy [2011], S in Equation (8) was treated as a 
dependent variable, i.e. the nonlinear diffusion model 
was applied. In the present dynamical 3D model, non-
linear diffusion would require inversion of large matrix-
es that reduces considerably the computation rate. We 
therefore apply linear diffusion and treat χT of (8) as a 
given function of radius r, but the effect of the increase 
in entropy gradient in rotating fluid is nevertheless in-
cluded by replacing /S r∂ ∂  in (8) with its corrected 
value, 

( ) ( )
0 /

,
0.2

S rS
r ∗ ∗

∂ ∂∂
=

∂ φ Ω + φ Ω


  (12) 

where 0 /S r∂ ∂  is the gradient (9) for not rotating fluid. 

 

Figure 1. The functions ( )∗φ Ω  and ( )∗φ Ω


 of the de-

pendence of thermal diffusivity (11) on rotation rate 

Apart from thermal eddy diffusion, modelling large-
scale flows demands a definition of the Reynolds stress 
tensor Rij in Equation (2). Lebedinsky [1941] was prob-
ably the first to find that in addition to the well-known 
contribution by the eddy viscosity v

ijR  rotating aniso-

tropic turbulence produces a non-dissipative stress :ijRΛ  

v ,ij ij ijR R RΛ= +  (13) 

which can cause the Sun to rotate differentially. The 
Lebedinsky effect, later named the Λ-effect, has been 
thoroughly studied and confirmed by computations 
within the mean-field theory [Rüdiger, 1989]. Pictorial 
explanation of this effect can be found in Kitchatinov 
[2005]. The Lebedinsky [1941] theory is linear in the 
Coriolis number. This number is indeed small near the 
solar surface but increases with depth to be large near 
the base of the convection zone. The Λ-эффект of the 
turbulence anisotropy was found to be small (∝ 1 Ω∗2⁄ ) 
in the deep convection zone [Kichatinov, 1986]. The 
anisotropy can, however, be replaced by inhomogeneity 
of the fluid density. The density inhomogeneity does 
also produce the Λ-effect, which is not small for large 
Coriolis number [Kichatinov, 1987]. The anisotropy is 
nevertheless important. Only with allowance for anisot-
ropy, the seismologically detected near-surface shear 
layer of solar rotation can be explained [Kitiashvili et 
al., 2023; Kitchatinov, 2023]. Therefore, the Λ-effect of 
the proposed model 

( ) ( )
( )  ( )  ( )

0

1

i jij
j i

i j
j i

R r rΛ   = −rΩ Λ × + × −   
 −Λ ⋅Ω Ω × +Ω ×   

Ω r Ω r

r Ω r Ω r

   

  

 (14) 

includes both the anisotropy and inhomogeneity. In this 
equation, 

( )

( )

2
MLT

0 T 0

2
MLT

1 T 1

,v

v

∗

∗

α 
L = λ Ω γ 

α 
L = λ Ω γ 

 (15) 

are functions of radius r, p v/c cγ =  is the adiabaticity 

index, / r=r r  is the radial unit vector,  
TT 0.8v = χ  

(quasilinear theory of turbulent transport gives the value 
of 0.8 for the Prandtl number), and  

( ) ( ) ( )
( ) ( ) ( )

0 0 0

1 1 1

2 ,

2 .

J I

J I

∗ ∗ ∗

∗ ∗ ∗

λ Ω = Ω + Ω

λ Ω = Ω + Ω
 (16) 

The functions J0 and J1 account for the contribution of 
the density inhomogeneity. I0 and I1 stand for the con-
tribution of turbulence anisotropy. The functions of 
Equation (16) are shown in Figure 2. Analytical expres-
sions for the functions are given in [Kitchatinov, 
Rüdiger, 2005]. The contribution of λ0 in (14) is respon-
sible for the angular momentum transport in radius. Its 
negative value means the transport toward the star’s 
center. The contribution of λ1 gives the angular momen-
tum transport along the rotation axis. Its positive value 
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means the transport from poles to the equator. The con-
tribution of λ0 dominates at small ,∗Ω  i.e. near the stel-
lar surface. This is a possible reason for the increase in 
the rotation rate with depth beneath the surface of the 
Sun [Schou et al., 1998].  

Figure 2 also shows the functions fν and fµ for the 
dependence of turbulent viscosities on .∗Ω  Similar to 
thermal diffusion, the eddy viscosity in a rotating fluid 
is anisotropic. The anisotropy of viscosity is less conse-
quential for the large-scale flows compared to the ani-
sotropy of thermal diffusion, but it causes many diffi-
culties for numerical computations. The anisotropic 
viscosity can transform a toroidal non-axisymmetric 
flow into a poloidal one and the other way round. This 
effect of anisotropy links the equations for poloidal and 
toroidal flows, thus increasing the size of the matrixes 
for inversion and reducing the computation rate. The 
proposed model employs the dissipative Reynolds stress 
in (13) with isotropic viscosity  

( )
( ) ( )T T

div ,

, .

v
ij i j j i ijR

v v f v f∗ ∗
ν µ

= ρν ∇ +∇ +ρµd

= Ω µ = Ω

vv v
 (17) 

The functions fv and fµ are also shown in Figure 2. In a 
rotating fluid, the eddy viscosity coefficients differ be-
tween the directions along and across the rotation axis. 
The viscosity v in (17) is a half-sum of the viscosities 
for these two directions. The eddy viscosity tensor for a 
rotating fluid was derived in [Kitchatinov et al., 1994] 
where analytical expressions for the functions 

( ) ( )1 2, ,∗ ∗φ Ω φ Ω  and ( )3 ,∗φ Ω  from which the func-

tions 1 20.5vf = f + f  and 3fµ = f  are constructed, are 
given.  
 

1.3. Flow potentials and boundary conditions 

The anelasticity condition, ( )div 0,ρ =v  imposes a re-
striction on the velocity field, which allows the velocity 
to be expressed in terms of two scalar potentials [Chan-
drasekhar, 1961], 

( )
2

2

2

1 1
sin

1 .
sin

v V WLV
r rr

V W
r r

 ∂ ∂
= − + − r ∂ ∂ϑ ϑ ∂ϕr  
 ∂ ∂

− − r ϑ ∂ ∂ϕ ∂ϑ 

 





ϑ

ϕ

r

 (18) 

In this equation, the usual spherical coordinates are 
used; ϑ  and ϕ are unit vectors in meridional and azi-
muthal directions, ( ), ,V r ϑ ϕ  and ( ), ,W r ϑ ϕ  are the 
poloidal and toroidal flow potentials respectively, and  

2

2 2

1 1ˆ sin
sin sin

L ∂ ∂ ∂
= ϑ +

ϑ ∂ϑ ∂ϑ ϑ ∂ϕ
 (19) 

is the angular part of the Laplacian.  
Toroidal flow lines lie on spherical surfaces of con-

stant radius r. The poloidal flow has a toroidal vector 
potential. In the proposed model, motion equation (2) is 
transformed into the equations for the flow potentials. 

 
Figure 2. The functions from Equations (15)–(17), which 

control dependence of the Λ-effect and eddy viscosities on the 
rotation rate of a star 

 
The radial component of curled Equation (2) gives the 
equation for the toroidal potential W. The radial compo-
nent of Equation (2) curled twice gives the equation for 
the poloidal flow. This procedure for deriving the large-
scale flow equations differs from that used in the dyna-
mo theory, where the equation for poloidal magnetic 
field can be obtained as the radial component of the 
induction equation without double curling [Krause, 
Rӓdler, 1980]. The difference is due to the fact that di-
vergence-free of the magnetic field is a fundamental 
law, but divergence-free of the momentum density is a 
consequence of the anelastic approximation. Curling the 
motion equation filters out the potential forces. The 
equations for the large-scale flow in terms of the scalar 
flow potentials are rather bulky. They are given in the 
Appendix.  

A unique solution of the model equations demands 
the boundary conditions. Natural conditions for the 
large-scale flow are zero cross-components of the stress 
tensor, 0r rR Rϕ ϑ= =  at the low (r1) and upper (r2) 
boundaries of the simulation region. The low boundary 
is placed at the base of the convection zone; and the 
upper one, at a small depth below the photosphere      
( 2 0.97 ,r R∗=  in the present model if another value is 
not specified). These boundary conditions require the 
surface density of tangential external forces equal zero. 
This means that the large-scale flow is controlled by 
internal processes inside the convection zone, not im-
posed externally. An equivalent formulation of the 
stress-free conditions as 

( )

( )

sin
0,

sin
0

rr

r r

RR

R R

ϕϑ

ϕ ϑ

∂ ϑ∂
− =

∂ϕ ∂ϑ
∂ ∂ ϑ

+ =
∂ϕ ∂ϑ

 (20) 

leads, in view of Equations (14), (17), and (18), to the 
conditions for the flow potentials: 

( )
( )

2

3
0 1

2

cos cos / 3 2cos / 5 0,

2 0,

rU W r

Q rD

− +W ×

 × ϑΛ + ϑ + ϑ Λ = 
+ =

 (21) 

where U, Q, and D are the new dependent variables, 
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( )
2

1, , .
LVW V QU Q D

r r rr
∂ ∂ ∂

= = = − −
∂ r ∂ ∂r



 (22) 

The reason for introducing the new dependent variables 
is related to the numerical method of the model as ex-
plained below. The closed boundary condition, vr=0, 
such that V=0, is also applied to both boundaries.   

Spherically symmetric heat flux ( ) ( )conv
1 1 ,rF r F r= δ  

enters the convection zone through the bottom boundary,  
where  

( ) ( )( )

( )

conv 2
T cos

1sin cos .

r
SF T C
r

SC
r

∗ ∗
c

∗
c

∂= −rc  φ Ω + φ Ω ϑ − ∂
∂ − φ Ω ϑ ϑ ∂ϑ

C

C

 (23) 
The surface boundary radiates into surrounding space as 
a black body: 

( ) ( )2conv
2 2

p2

1 4 .
4r

L r SF r
cr

 
= +  p  

 (24) 

It is supposed in this equation that the thin layer be-
tween r2 and the stellar surface is a perfect heat ex-
changer [Kitchatinov and Olemskoy, 2011]. 

1.4. Expansion in spherical functions and 
angular momentum conservation 

Boundary conditions (20) ensure conservation of 
angular momentum 

( )2

1

2 2

0 0
sin .

r

r
r d d dr

π π
= r ϑ × ϕ ϑ∫ ∫ ∫M r v  (25) 

The formulation of this conservation law for the rotating 
reference frame has some specifics. Consider a rotating 
Cartesian reference frame with the rotation axis z and 
equatorial plane (x,y). Let the longitude φ in (25) be 
measured from the x-axis. Differentiate angular momen-
tum (25) on time, substitute / t∂ ∂v  from Equation (2), 
and integrate the resulting equation by parts. This gives 

0, , .z x y y xM M M M M= = Ω = −Ω    (26) 

Mz and the absolute value 2 2
x yM M M⊥ = +  of the an-

gular momentum normal to the rotation axis do not 
change with time. The conservation law can be used to 
control numerical solutions.  

The angular momentum equations can be simplified 
by an expansion in spherical functions. Velocity expres-
sion (18) and the equations for the flow potentials (see 
Appendix) contain L -operator (19) in multiple. It is 
therefore convenient to apply expansion in terms of the 
eigenfunctions ( ), ,l mY ϑ ϕ  of this operator, 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

,

0
,

,

, 2sin cos for 0,

, 2 cos for 0,

, 2cos cos for 0,

m
l m l

l m l

m
l m l

Y m P m

Y P m

Y m P m

ϑ ϕ = ϕ ϑ <

ϑ ϕ = ϑ =

ϑ ϕ = ϕ ϑ >

 (27) 

where overlines mean the normalized functions. In par-
ticular, for the normalized adjoint Legendre polynomi-

als m
lP , it means that ( )( )

2

0
cos sin 1.m

lP d
π

ϑ ϑ ϑ =∫   

The toroidal flow potential W is expanded as follows, 

( ) ( ) ( )max

min , ,, , ,M l
l m l mm M l l

W t W r t Y
=− =

= ϑ ϕ∑ ∑r  (28) 

and the same for other flow potentials and the entropy. 
In this equation, minl m=  for the entropy and 

( )min max m , 1l =  for the flow potentials, 
( )max max m , 1 1,l L= + − M and L are the model pa-

rameters controlling the number of harmonics in de-
composition (28). A peculiarity of Equation (28) is that 
the maximum azimuthal M and meridional L wave 
numbers are not mutually dependent and can assume 
arbitrary values. This imparts flexibility to the model 
that can be used not only for nonlinear 3D numerical 
experiments, but also for simulating the axisymmetric 
(M=0) flows and for analyzing the axisymmetric flow 
stability to disturbances with moderate m.  

Substitution of (28) into (25) shows that only the 
modes with l=1 contribute to the angular momentum:  

( )
( ) ( ) ( )( )2

1

2
1,1 1, 1 1,0

, ,

8 , , .
3

x y z

r

r

M M M

r W r W r W r d r−

=

π
= − r −∫

 (29) 

Decomposition (28) also leads to a useful expression 
for the total kinetic energy 2 3

k / 2,E v d= ρ∫ ρ  

( )
( ) ( ) ( ) ( )2

1

,

2 2 2
, , ,2

2 1

1
,

l m

r

l m l m l mr

E l l

l l
V r Q r W r dr

r

= π + ×

+ 
× +r +r r 

∑

∫

k

 (30) 

which suggests that the kinetic energy is not only a su-
perposition of independent contributions of the poloidal 
and toroidal parts of the flow but also splits into the 
contributions of individual harmonics from the flow 
expansion in spherical functions. It should be noted that 
this superposition holds globally for the total energy, 
but it is not valid for the local energy density.  

Equations (29) and (30) can be applied to diagnos-
tics of numerical computations.  

 
2. NUMERICAL METHOD 

Decomposition (28) in spherical functions leads to a 
system of partial differential equations in two independ-
ent variables, t and r. The equations are solved numeri-
cally by finite difference methods.  

The problem at hand has thin (Ekman) boundary 
layers [Durney, 1989]. The finite-difference grid in ra-
dius should therefore be denser near the boundaries. The 
grid of N points includes the boundaries r1, r2 and in-
termediate grid points 

( )2 1 2 1
1 3 / 2cos ,
2 2

2 1.

j
jr r r r r
N

j N

 −  = + − − π  −  
≤ ≤ −

 (31) 

The grid is a linear transform of zeros of Chebyshev 
polynomials in the range of  [–1, 1] to [r1, r2]. This 
finite-difference grid worked well in former 2D models 
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[Kitchatinov, Olemskoy, 2011, 2012]. It also permits 
computation of integrals (29) and (30) with high preci-
sion by the method of the Gauss-Chebyshev quadrature 
[Press et al., 1992]. Coefficients of the model equations 
depend on the stellar structure parameters. The parame-
ters are computed with the MESA model [Paxton et al., 
2011]. The MESA results are transformed into grid (31) 
by cubic spline interpolation. New dependent variables 
U, Q, and D (22) are introduced in order to simplify the 
finite-difference derivations. With these variables, the 
model equations include the first-order spatial deriva-
tives only, and formulation of the equations for the mid-
points between neighbouring grid points ensures sec-
ond-order precision in radius.  

The model is second-order accurate in time also. All 
terms in the equations except for the diffusive ones (vis-
cosity and thermal diffusion) were advanced in time 
with the second-order Runge-Kutta method. Diffusion is 
treated with the Crank-Nicholson method [Press et al., 
1992]. More specifically, the explicit diffusion scheme 
is applied with a weight of (1–q) and the implicit one – 
with weight q, where q is the model parameter, 
0.5 1q≤ ≤  (the low bound follows from the numerical 
stability condition). q=0.501 in the model computations 
if another value is not stated. This q-value ensures nu-
merical stability but is close to q=0.5 of the second-
order accurate Crank-Nicholson scheme. 

The time-step equals one percent of the rotation period, 
rot0.01 .t P∆ = The number of radial grid points N=31 gave 

a sufficiently good accuracy for the Sun with a rotation 
period Prot=25.4 days; increasing N beyond this number did 
not change noticeably the results. The presence of Ekman 
boundary layers demands an increase in N in proportion to 

1/ 2
rotP−  for shorter rotation periods. 

 
3. FIRST RESULTS 

The MESA model for a star of one solar mass and 
metallicity Z=0.02 gives R*=1.003R


 and luminosity 

L*=0.999L


 for the age of 4.6 Gyrs. The structure of this 
star was used in computations for the Sun. 

Figure 3 shows relative deviation 𝜀𝜀 (1) from adia-
batic stratification within the convection zone. In accord 
with the anelastic approximation [Lantz, Fan, 1999], 
radial inhomogeneity of thermodynamic parameters in 
the entire convection zone except for a thin near-surface 
layer is close to an adiabatic profile.  

3.1. Relaxation to an axisymmetric steady 
state 

Consider first the computations for the initial condi-
tion of zero flow (v=0) and latitude-independent entropy 
distribution (12). The maximum wave numbers in ex-
pansions (25) were L=21 and M=5, i.e. the computations 
permit deviations from axial symmetry. 

As initial angular momentum (25) in our rotating 
reference frame is zero, it should remain so according to 
conservation rules (26). However, our numerical method 
is not conservative in angular momentum. Equations (26) 

 
Figure 3. Normalized deviation from adiabatic stratifica-

tion in the solar convection zone according to Equations (1) 
and (9) 

were therefore violated in the course of the computa-
tions but the values of Mz и M⊥ did not exceed 10–4 of 
the product M0=IΩ of the convection zone momentum 
of inertia I with the angular velocity. 

In the course of the runs, the large-scale flow 
emerges and then increases due to Λ-effect (14) and the 
baroclinic source of the poloidal flow (see Appendix). 
The heat transport anisotropy of Equation (11) induces 
the entropy dependence on latitude. Meanwhile, the 
flow and entropy conserve the axial symmetry of the 
initial state. This means that the “numerical noise” due 
to the finite precision of numerical computations does 
not produce non-axisymmetric disturbances in the pro-
posed model. 

An equatorially symmetric steady state is ap-
proached after the diffusive time 2 /R v∗  (~10 years). 
The results are presented in Figures 4–6. The agreement 
with observations weakened somewhat compared to the 
axisymmetric steady model by Kitchatinov and Olem-
skoy [2011] but still remains rather close. Figure 4 
shows the modelled differential rotation. For comparing 
with observations, the angular velocity Ω of the refer-
ence frame is added here to the computed rotation rate. 
The modelled surface rotation closely agrees with Doppler 
measurements by Snodgrass and Ulrich [1990]. The merid-
ional flow of Figure 5 also agrees with seismological de-
tections [Rajaguru, Antia, 2015; Gizon et al., 2020]. 

The temperature difference p/T T S cδ = δ between 
the equator and poles is shown in Figure 6 as the func-
tion of radius r. The differential temperature is im-
portant for the thermo-rotational balance in the bulk of 
the convection zone and for meridional flow excitation 
near its boundaries [Hazra et al., 2023]. Note that the 
differential temperature 1.4 KTδ . on the upper 
boundary of the simulation domain does not equal to its 
value on the photosphere. If the layer from the upper 
boundary to the stellar surface is a perfect heat ex-
changer, as assumed in the model, then equal values 
have entropy disturbances /S T Tδ ∝ δ  at the upper 
boundary and the surface. The steep temperature de-
crease toward the surface then implies a “not measura-
ble” surface differential temperature of order 0.01 Kelvin. 
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Figure 4. Differential rotation of the asymptotic axisym-

metric state: angular velocity isolines (left) and the surface 
differential rotation (right). Full and dashed lines indicate the 
model results and Doppler measurements by Snodgrass and 
Ulrich [1990] respectively 

 

 
Figure 5. Left: Streamlines of the meridional flow after 

the model computation. Full and dotted lines show the clock-
wise and anticlockwise circulation respectively. Right: Merid-
ional velocity on the surface (full line) and bottom (dashed) of 
the convection zone 

 

 
Figure 6. Entropy profile in the axisymmetric steady state. 

Left: Isentropic lines. Right: Differential temperature – tem-
perature difference between poles and equator – as function of 
radius 

3.2. Dynamics of non-axisymmetric disturb-
ances 

 
Other computations use a mixture of the steady ax-

isymmetric solution (see Figures 4–6) with non-
axisymmetric disturbances of the toroidal flow of 
1 ≤ 𝑚𝑚 ≤ 5 and amplitude ~0.1 of its axially symmetric 
part as the initial condition. Nonlinear interactions cause 
the non-axisymmetric poloidal flow and entropy dis-
turbances to emerge later on.  

In the case of decaying deviations from axial sym-
metry, the computations would show eigenmodes of the 
model equations with finite m. However, the computa-
tions revealed a non-axisymmetric instability indicative 
of an internal contradiction in the mean-field hydrody-
namics when applied to stellar convection zones. Non-
axisymmetric disturbances initially grow with time. 
Then, the growth saturates at some amplitude of irregu-
larly varying with time disturbances. The axisymmetric 
part of the solution also attains an irregularly varying 
part. This instability is not new [Rüdiger, Spahn, 1992; 
Tuominen et al., 1994]. By all probabilities, this insta-
bility is thermal convection. This is in particular indi-
cated by the fact that the instability does not develop if 
radial velocity is put to zero, vr=0, in the entropy equa-
tion. It is assumed in mean-field hydrodynamics that the 
role of turbulent convection is fully accounted for by 
introducing eddy transport coefficients. The presence of 
convective instability in the model evidences incon-
sistency of such an assumption: the eddy transport coeffi-
cients do not replace convection.  

The present instability has been met in the axisym-
metric model of the steady differential rotation [Kitchat-
inov, Olemskoy, 2011] as well. In the model, the insta-
bility was eliminated by applying a sufficiently large 
ratio MLT p/ Hα =   of the mixing length to the pressure 
scale height, and the closer was the upper boundary r2 to 
the stellar surface, the larger αMLT value was required 
for stability. This means that instability is located near 
the surface, which has also been notified by Tuominen 
et al. [1994]. This can be explained by an increase in 
superadiabaticity toward the stellar surface (see Figure 
3). An increase in the mixing length reduces entropy 
gradient (9) and increases diffusion (8). This is why an 
increase in αMLT suppresses the instability. It can be 
noted that reducing the mixing length near the base of 
the convection zone does not provoke the instability 
[Kitchatinov, Nepomnyashchikh, 2017]. In the axisym-
metric models, αMLT=2.2 ensures stability for 

2 0.97 .r R∗= This value of αMLT is also used in the pre-
sent paper. The model is therefore stable with axial 
symmetry (see Figures 4–6). The dominant mode of 
rotating convection is, however, not axisymmetric (ba-
nana cells [Glatzmaier, Gilman, 1981]). Instability to 
non-axisymmetric disturbances therefore remains.  

The mean-field hydrodynamics can probably be rec-
tified from the discussed contradiction by allowance for 
the dependence of 𝛼𝛼MLT on radius following, e.g., from 
minimisation of total (kinetic plus thermal) energy of 
convection zone. Such a task should probably be a sub-
ject of a separate work. In this paper, the thermal con-
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vection is excluded artificially by using a fixed steady 
entropy distribution obtained in the axisymmetric model 
(see Figure 6). Initial non-axisymmetric disturbances 
are then decaying with time.  

The decay is clearly seen in Figure 7, where the kinetic 
energy of the disturbances of different m is shown in de-
pendence on time, separately for toroidal and poloidal parts 
of the flow. As the non-axisymmetric disturbances decay, 
their nonlinear interactions weaken. The flow modes of 
different m then evolve independently because coefficients 
of the model equations do not depend on longitude. Even-
tually, the most slowly decaying eigenmode of the model 
equations survives for each m. The energy of an 
eigenmode depends on time as ( )exp 2 / ,mt− t  where τm is 
the characteristic life-time of the eigenmode. These time 
dependences form strait lines in Figure 7. It takes a suffi-
ciently long time for the longest living mode to emerge 
from the initial mixture of the eigenmodes. The 
eigenmodes’ parameters are given in Table.  

Recent observations [Löptien et al., 2018; Mandal 
et al., 2021; Mandal, Hanasoge, 2024] discovered r-
modes [Saio, 1982] – horizontal vortices drifting in 
longitude – on the Sun. A distinctive feature of r-modes 

 
Figure 7. Kinetic energy (30) of the toroidal (top panel) 

and poloidal (bottom) parts of the flow for different azimuthal 
wave numbers m. Energy is given in units of 1033 erg 

 
Parameters of non-axisymmetric eigenmodes of large-

scale flow. Lifetime 𝜏𝜏𝑚𝑚, toroidal-to-poloidal energy ratio 
Etor/Epol, and symmetry notations for the equator-symmetric 
(S) and antisymmetric (A) modes  

m τm, years Etor/Epol Symmetry 
1 0.754 45.9 S 
2 4.64 21200 A 
3 1.22 2080 A 
4 2.30 1.00 S 
5 0.970 1.24 S 

 

is a small value of radial displacements. It can be seen 
from Table that a relative small radial (poloidal) flow 
was found for m from 1 to 3. The flow patterns for 
eigenmodes with m=2 and 3 are demonstrated in Fig-
ures 8 and 9 respectively.  

Toroidal vortex flows in these Figures are cen-
tered on the equator and have the so-called sectorial 
structure, i.e. they have no nodes of sign reversal in 
latitude. This is in qualitative agreement with obser-
vations made by Löptien et al. [2018]. But in view of 
the above contradiction, the results of this paper for 
non-axisymmetric flows are preliminary. We there-
fore refrain from more detailed comparison with ob-
servations. 
 

CONCLUSION 
This paper was aimed at extending the steady dif-

ferential rotation models by allowing for variations 
with time and deviations from axial symmetry. The 
work suitability is justified by observations of large-
scale vortices on the Sun and by a planned unification 
with dynamo models.  

The new model for large-scale flows in convection 
zones of the Sun and stars has been developed in the 
framework of mean-field hydrodynamics and is realized 
as a numerical code for solving equations of hydrodynam-
ics and heat transport. The numerical model combines 

 
Figure 8. Flow pattern of the eigenmode with azimuthal 

wave number m=2 at radius 𝑟𝑟 = 0.9𝑅𝑅∗. Full (dotted) lines 
indicate streamlines of toroidal flow with clockwise (anti-
clockwise) circulation. Radial velocity is coded by color. Am-
plitude of the decaying flow is normalized to 1 m/s  

 

 
Figure 9. The same as in Figure 8 but for m=3 
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the spectral decomposition method in horizontal dimen-
sions with second-order accurate finite difference meth-
ods in time and radius. This provides a reliable tool for 
further theoretical studies of the Sun and stars with ex-
ternal convection zones.  

Our first computations have shown that the axially 
symmetric part of computed flow reproduces closely the 
differential rotation and meridional flow patterns detect-
ed by helioseismology. At the same time, computations 
of non-axisymmetric flows revealed an internal contra-
diction of mean-filed hydrodynamics in its applications 
to stellar convection zones, which calls for a revision of 
the mixing-length theory. The proposed model can and 
should be used in eliminating the contradiction. The 
first computations of non-axisymmetric flows have nev-
ertheless demonstrated at least qualitative agreement 
with observations of large-scale Rossby waves on the Sun.  

This work was financially supported by the Ministry 
of Science and High Education of the Russian Federation. 
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APPENDIX 
 

EQUATIONS FOR THE TOROIDAL AND POLOIDAL FLOW PARTS 

The equation for the toroidal part of the flow can be symbolically written as rr⋅(∇×Equation (2)). In terms of scalar 
flow potentials (18) and new dependent variables (22), it reads 

( )
( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2

3
3 3 2

1 0 12 2

2

2

ˆ 1 ˆ ˆ ˆ2 2

cos cosˆ cos 1 5cos / 3
3

ˆ ˆˆ2 sin cos 2

ˆ ˆ ˆ1 ˆ ˆ

LW vv r L rU W L LW
t rr r

L r r
r rr r

W LV LVQ LQ
r r

LV LW LW VLW LV
r rr

∂ ∂  = r − + + + ∂ ∂r

 ϑ ∂ ϑ ∂
+WrL   − rL  + ϑ − ϑ L − 

∂ ∂rr  
    ∂ ∂ − W + ϑ + − ϑ − +       ∂ϕ ∂ϑ rr      

∂ ∂ ∂ ∂
+ − +

∂ ∂ ∂ϑ ∂r

( )

( ) ( ) ( ) ( )

( ) ( )

2

2

2 2

2 2

ˆ

ˆ ˆ ˆ ˆ1 1 1
sin

ˆ ˆ1 .
sin

LV W
r r

LW LW LV LVW W D D
r

LW LVV W
r rr

 ∂ ∂ − + 
ϑ∂ ∂ϑ ∂ϑ∂  

 ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ + − + − + 
∂ϕ ∂ϑ ∂ϑ ∂ϕ r ∂ϕ ∂ϑ r ∂ϑ ∂ϕϑ   
 ∂ ∂∂ ∂ + − 

∂ϕ ∂ϕ∂ ∂ϕ ∂ϕ∂r ϑ   
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Large-scale flow model 

The two first terms on the right side of the equation are the contributions of turbulent viscosity. The next term in the 
curly brackets account for the Λ-effect, the next curly brackets stand for the Coriolis force, and all further terms rep-
resent the nonlinearities. Note that with using new dependent variables (22), the equation contains only first-order 
derivatives in radius. This is what the new variables were introduced for.  

The symbolic form of the equation for the poloidal flow, rr⋅[∇×(∇×Equation (2)], is more complicated com-
pared with the toroidal one. Accordingly, the equation in terms of the flow potentials is more bulky: 

( ) ( )

( )

2
2

2 3 2 2 2
p

2

2 2 2

ˆ 2 2ˆ ˆ ˆ

ˆ1 1ˆ ˆ2 cos sin sin

1 1 1ˆ
sin sin

LD d vv v d V F gL D V L LS
t dr dr r r cr r r

LVD d U WLU L
dr rr

Q D W U Q D WL
r

∂  r+µ r ∂ ∂    = + − + − −    ∂ ∂ ∂rr      
 ∂∂ r ∂ ∂  − W − − ϑ + ϑ + ϑ +  ∂ϕ ∂ϕ ∂ϑ ∂ϑr    

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + −

∂ϑ ∂ϑ ∂ϑ ∂ϑ ∂ϕ ∂ϕ ∂ϕϑ ϑ

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

2

2

2

1 1ˆ
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ˆ ˆ1 1ˆ ˆ ˆ

ˆ ˆ ˆ ˆ1 1 1
sin

1
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U

Q U U Q W D D WL
r

LW LVW DLW LD LV
r r

LW LW LV LVQ Q U U
r r

r r

 
+ 

∂ϕ 
  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ − + − +  ϑ ∂ϕ ∂ϑ ∂ϕ ∂ϑ ∂ϕ ∂ϑ ∂ϕ ∂ϑ  
 ∂ ∂∂ ∂ ∂ + − + − + 

∂ r ∂ϑ ∂ϑ ∂ϑ ∂ϑ  
 ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ + − + − + 

∂ ∂ϕ ∂ϑ ∂ϑ ∂ϕ r ∂ϕ ∂ϑ r ∂ϑ ∂ϕϑ   

∂
+
∂

( ) ( )
2

ˆ ˆ1 .
n

LW LVW D ∂ ∂∂ ∂ − 
∂ϕ ∂ϕ r ∂ϕ ∂ϕϑ   

  

In this equation, ( ) ( ) ˆ1 2vD d v LVF Q
r r dr r

 ∂ rr
= + +  r ∂ rr  

 is one more dependent variable in addition to (22). The term 

including the entropy is the baroclinic source of the poloidal flow.  
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