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Abstract. The paper presents a mean-field model for
large-scale flows in convection zones of the Sun and
solar-type stars. The model extends former differential
rotation models by allowance for variations of the flow
with time and its deviation from axial symmetry. The
model is realized as a numerical code, which combines
the spectral method of decomposition in spherical func-
tions with second-order accurate finite-difference meth-
od for time and radius. First computations show close
agreement of the axially symmetric part of the computed

flow with helioseismological detections of differential
rotation and meridional circulation. Patterns of the time-
decaying non-axisymmetric flow computed with the
model qualitatively agree with the Rossby waves ob-
served on the Sun. The paper also formulates a problem
for further development of the large-scale flow theory.

Keywords: Sun, stars, rotation, convection, turbu-
lence, numerical methods.

INTRODUCTION

The Sun and solar-type stars host large-scale flows,
inhomogeneous (differential) rotation and meridional
circulation being the most known examples. The rota-
tion rate increases from poles to the equator by about
30% on the Sun, and the surface meridional flow from
the equator to the poles has an amplitude ~10 m/s. The
large-scale flows are important for the solar and stellar
dynamos [Charbonneau, 2020; Karak, 2023; Charbon-
neau, Sokoloff, 2023].

The large-scale flows are, by all probabilities, driven
by turbulent convection. This is clearly indicated by
spatial coincidence of the regions occupied by the dif-
ferential rotation [Thompson et al., 1996; Schou et al.,
1998] and meridional flow [Rajaguru, Antia, 2015; Gi-
zon et al., 2020] with the convection zone as revealed
by helioseismology.

The large-scale flow theory is dominated by two
complementary approaches. A majority of studies apply
the so-called direct numerical simulations. In this ap-
proach, three-dimensional time-dependent flows com-
prising both convection and large-scale parts are com-
puted from the equations of hydrodynamics. The large-
scale flow can be extracted by time averaging. A repro-
duction of observations with such an approach would
confirm the fact that the Sun obeys fundamental equa-
tions. In spite of impressive progress in this direction, a
correspondence to observations is still not achieved
(see, e.g., reviews by Hotta et al. [2023] and Kapyla et
al. [2023]).

Another approach, named “mean-field theory”, dif-
fers by sequence of averaging and equation solving (see,
e.g., Rudiger [1989], Brandenburg et al. [2023]). Aver-
aging of fundamental equations is done first. This gives
equations for large-scale fields. The equations include
contributions of turbulence, which should be expressed
in terms of sufficiently simple turbulence parameters
and the averaged large-scale fields. Approximate meth-

ods of turbulence theory and not well justified assump-
tions are unavoidable in this approach, but the mean-
field theory clarifies the physics of large-scale flows.

The numerical models based on the mean-field theo-
ry [Kitchatinov, Olemskoy, 2011, 2012] reproduce the
differential rotation and meridional flow detected by
helioseismology and do not contradict the observed
[Barnes, 2005; Balona, Abedigamba, 2016] dependenc-
es of the differential rotation on rotation rate and tem-
perature of solar-type stars. The models compute the
large-scale flows in stellar convective envelopes assum-
ing their axial symmetry and independence of time.
There are, however, dynamical models of torsional os-
cillations [Pipin, Kosovichev, 2019, 2020].

This paper extends the mean-field models with al-
lowance for the large-scale flow dependence on time
and longitude. Observations of large-scale vortical
flows on the Sun [Léptien et al., 2018] justify the expe-
diency of such an extension. A planned unification of
differential rotation and stellar dynamo models also
demands allowance for the variability with time. Stellar
torsional oscillations can be strong [Collier Cameron,
Donati, 2002] and large deviations from axial symmetry
can be expected [Kitchatinov, 2022].

The model design is described in Section 1. Section
2 explains the numerical method used in the model.
Results of the first applications to the Sun are given in
Section 3. Main results and a problem for future are
summarized in Conclusions.

1. MODEL

1.1. Basic equations and approximations

The model confines to the case of slow rotation,
where the centrifugal acceleration R,Q? is small com-

pared to the gravity g and deviation from spherical
symmetry in distributions of density p, temperature 7,
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and pressure P = (cp —cv) pT can be neglected (Q is the

angular velocity, R, is the stellar radius, c, and c, are

the specific heat capacity at constant pressure and vol-
ume; perfect gas equation of state is assumed). The
spherical symmetry assumption does not, however, refer
to the specific entropy S =c, InP —c, Inp, whose small
spatial inhomogeneity is responsible for thermal con-
vection. The temperature gradient in stellar convection
zones is superadiabatic, but the relative value of super-
adibaticity,

<1 (1)

r r
€= §|V5| = ?|VT ~(VT),,

is small. In this equation, r is the distance to the star’s
center, (VT) =g/c, is the adiabatic gradient, the

equation of state and the hydrostatic equilibrium condi-
tion, VP =pg were used. An estimation of € (1) con-

firming its small value will be given below.

At small superadiabaticity, the velocity u of turbu-
lent convection and the mean large-scale flow velocity v
are both small compared to the sound velocity. The
large radial inhomogeneity of the fluid does not, how-
ever, permit the incompressibility approximation. It is
replaced by the anelastic approximation, which in par-
ticular means the divergence-free of the momentum

density, div(pv)=0. The physics of anelastic approxi-
mation and its justification are clearly explained by

Lantz and Fan [1999]. The large-scale flow equation in
this approximation can be written as follows

a—v=—(V~V)V+lV~R+
p

ot )
N )
+2vxQ-V| — |-—g.
P) G
In this equation, R is the Reynolds stress tensor,
Ri; =—p<uy;u; > where the angular brackets mean

averaging, and V-R is a vector with components VR,
where the repetition of subscripts from here on signifies
summation. Equation (2) refers to the reference frame
co-rotating with a star with angular velocity Q.

In the anelastic approximation, all thermodynamic
parameters except entropy are considered to be steady
functions of coordinates [Lantz, Fan, 1999]. Distribu-
tion of these parameters within the convection zone is
taken from the model MESA [Paxton et al., 2011] of
stellar structure and evolution as it is explained in Sec-
tion 2 below. Entropy is a dependent variable in our
model. It obeys the heat transport equation

B —(v-v)s +ivipTxijvjs -
ot pT

. ®)
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pT pT
where y is the thermal diffusivity tensor, g stands for
the sources/sinks of heat (due to nuclear reactions with-

in the convection zone, gravitational energy release by

stellar compression and others), and F™ is the radiative
heat flux. With the accepted approximations, it reads

16cT?

Frad - _
3pc,x

(4)
where o is the Stefan — Boltzmann constant and « is the
opacity.

The Reynolds stress and thermal diffusivity in Equa-
tions (2) and (3) should be expressed in terms of the
fluid parameters and large-scale fields.

1.2. Turbulent transport coefficients in ro-
tating convection zone

The key parameter for the rotational influence on
convective turbulence is the Coriolis number,

Q' =210, 5)

where 7 = £/u is the characteristic time of turbulent
mixing and u is the root-mean-square velocity. Let us
estimate t for non-rotating convection. This can be done
with the mixing-length theory (see, e.g., the recent re-
view by Joyce and Tayar [2023]), on which the compu-
tations of convection zone structure in stellar evolution
models and the anelastic approximation [Lantz, Fan,
1999] are based. The mixing-length estimation for the
RMS velocity reads
2
u® = —g—gﬁ (6)
4c, or

where ¢ =a., H,is the mixing-length proportional to

the pressure scale height H, =P/(pg). The turbulent

convection transports the heat flux
SF =L, /(4nr2)— Frad
0S
—pTy; — =0OF, 7
P AT or (7

where L, is the total flux through the sphere of radius r.

With allowance for Equation (6), the thermal diffusivity
¥+ = fu/3can be written as

¢ | g oS
L 82 8
Xt 6 . or (8)

On using Equation (7), this leads to the entropy gradient

1/3 2/3
I ) 65F 9)
a g pT 2 )

where the subscript in Sy reminds that the equation does
not account for rotation. Substitution of entropy gradient
(9) into Equation (6) leads to an estimation of the con-
vective turnover time:

2 1/3

B 4c,pl°T
Tl TageF |
This estimation is used to define Coriolis number
(5). All the parameters in the right-hand side of (10) are

taken from a stellar structure model (MESA in this pa-
per). The convective time t depends on the radius r and

(10)
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increases with depth in the convection zone. Therefore,
the Coriolis number also does so.

The quasilinear theory of turbulent transport gives
for the thermal diffusivity tensor of Equation (3) the
following expression

Xii = X9 +XH§i ﬁj,
xX= XT¢(Q*)!
M:h%%@j'

where C, is the model parameter (C, =2 in this paper)

(11)

and Q=9Q/Q is the unit vector along the rotation axis.
The functions ¢(Q") and ¢, (Q") are shown in Figure 1.

Analytical expressions for these functions are given in
Kitchatinov et al. [1994]. Equation (11) accounts for the
rotationally induced anisotropy of turbulent heat
transport. y is the isotropic part of the thermal diffusion
and y, is the extra diffusivity along the rotation axis.

Anisotropy of thermal diffusion is essential for differential
rotation physics. Reproducing the results of helioseis-
mology with theoretical models is only possible with al-
lowance for this anisotropy [Rudiger et al., 2005]. It can be
seen in Figure 1 that the anisotropy vanishes in the slow

rotation limit, Q" — 0, as should be the case.

Figure 1 also shows that rotation suppresses thermal
diffusion. This rotational effect is partly compensated
by an increase in the entropy gradient which leads to an
increase in 1 (8). In the steady model by Kitchatinov
and Olemskoy [2011], S in Equation (8) was treated as a
dependent variable, i.e. the nonlinear diffusion model
was applied. In the present dynamical 3D model, non-
linear diffusion would require inversion of large matrix-
es that reduces considerably the computation rate. We
therefore apply linear diffusion and treat 1 of (8) as a
given function of radius r, but the effect of the increase
in entropy gradient in rotating fluid is nevertheless in-
cluded by replacing 0S/or in (8) with its corrected
value,

as 0S, / or
\/¢ )+0.29, ()
where 8S;/or is the gradient (9) for not rotating fluid.

(12)
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Figure 1. The functions ¢(Q*) and ¢H(Q*) of the de-
pendence of thermal diffusivity (11) on rotation rate

Apart from thermal eddy diffusion, modelling large-
scale flows demands a definition of the Reynolds stress
tensor Rj; in Equation (2). Lebedinsky [1941] was prob-
ably the first to find that in addition to the well-known

- Ly . .
contribution by the eddy viscosity R; rotating aniso-

tropic turbulence produces a hon-dissipative stress RU{‘ :

R RV+RA

ij ij

(13)

which can cause the Sun to rotate differentially. The
Lebedinsky effect, later named the A-effect, has been
thoroughly studied and confirmed by computations
within the mean-field theory [Rudiger, 1989]. Pictorial
explanation of this effect can be found in Kitchatinov
[2005]. The Lebedinsky [1941] theory is linear in the
Coriolis number. This number is indeed small near the
solar surface but increases with depth to be large near
the base of the convection zone. The A-a¢dexr of the
turbulence anisotropy was found to be small (e 1/0*2)
in the deep convection zone [Kichatinov, 1986]. The
anisotropy can, however, be replaced by inhomogeneity
of the fluid density. The density inhomogeneity does
also produce the A-effect, which is not small for large
Coriolis number [Kichatinov, 1987]. The anisotropy is
nevertheless important. Only with allowance for anisot-
ropy, the seismologically detected near-surface shear
layer of solar rotation can be explained [Kitiashvili et
al., 2023; Kitchatinov, 2023]. Therefore, the A-effect of
the proposed model

R; =—PQ{A0 [F‘ (ﬁx;)j +0) (ﬁx;)i}

-0(7-6)[ 6 (@xr) +6,(@xr) |

includes both the anisotropy and inhomogeneity. In this
equation,

2
A, =VT[GMLT] ho (Q),

Y

2
Ay =Vq [a'\;” j M (Q*)

are functions of radius r, y=c,/c,

(14)

(15)

is the adiabaticity

index, r=r/r is the radial unit vector, vr =08y,

(quasilinear theory of turbulent transport gives the value
of 0.8 for the Prandtl number), and

ko (Q7) =35 (Q7)+21, (),

(Q) =3, (Q7)+21,(Q).
The functions J, and J; account for the contribution of
the density inhomogeneity. I, and I, stand for the con-
tribution of turbulence anisotropy. The functions of
Equation (16) are shown in Figure 2. Analytical expres-
sions for the functions are given in [Kitchatinov,
Rudiger, 2005]. The contribution of Aq in (14) is respon-
sible for the angular momentum transport in radius. Its
negative value means the transport toward the star’s

center. The contribution of A, gives the angular momen-
tum transport along the rotation axis. Its positive value

(16)
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means the transport from poles to the equator. The con-

tribution of A, dominates at small Q", i.e. near the stel-
lar surface. This is a possible reason for the increase in
the rotation rate with depth beneath the surface of the
Sun [Schou et al., 1998].

Figure 2 also shows the functions f, and f, for the

dependence of turbulent viscosities on Q. Similar to
thermal diffusion, the eddy viscosity in a rotating fluid
is anisotropic. The anisotropy of viscosity is less conse-
quential for the large-scale flows compared to the ani-
sotropy of thermal diffusion, but it causes many diffi-
culties for numerical computations. The anisotropic
viscosity can transform a toroidal non-axisymmetric
flow into a poloidal one and the other way round. This
effect of anisotropy links the equations for poloidal and
toroidal flows, thus increasing the size of the matrixes
for inversion and reducing the computation rate. The
proposed model employs the dissipative Reynolds stress
in (13) with isotropic viscosity

R = pv(Vivj +V,y, )+pp8ijdiw,
v=v,f (Q) p=v; fu(Q*).

The functions f, and f,, are also shown in Figure 2. In a
rotating fluid, the eddy viscosity coefficients differ be-
tween the directions along and across the rotation axis.
The viscosity v in (17) is a half-sum of the viscosities
for these two directions. The eddy viscosity tensor for a
rotating fluid was derived in [Kitchatinov et al., 1994]
where analytical expressions for the functions

¢l(Q*),¢2(Q*), and ¢3(Q*), from which the func-

tions f,=¢,+0.5¢, and f, =¢, are constructed, are

A7)

given.

1.3. Flow potentials and boundary conditions

The anelasticity condition, div(pv)=0, imposes a re-

striction on the velocity field, which allows the velocity
to be expressed in terms of two scalar potentials [Chan-
drasekhar, 1961],

PR Q 2
V=L2(LV)—§ 10V +Laﬂ _
pr ripordd sind oo
o1 oV w
r{psingoroep a9 )
In this equation, the usual spherical coordinates are

(18)

used; 9 and (Bare unit vectors in meridional and azi-
muthal directions, V (r, 9, ¢) and W (r, 9, ¢) are the
poloidal and toroidal flow potentials respectively, and

1 0. .0 1 0
sin 9 09 0% sin“ 9 oo
is the angular part of the Laplacian.

Toroidal flow lines lie on spherical surfaces of con-
stant radius r. The poloidal flow has a toroidal vector

potential. In the proposed model, motion equation (2) is
transformed into the equations for the flow potentials.

L

(19)
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Figure 2. The functions from Equations (15)—(17), which
control dependence of the A-effect and eddy viscosities on the
rotation rate of a star

The radial component of curled Equation (2) gives the
equation for the toroidal potential W. The radial compo-
nent of Equation (2) curled twice gives the equation for
the poloidal flow. This procedure for deriving the large-
scale flow equations differs from that used in the dyna-
mo theory, where the equation for poloidal magnetic
field can be obtained as the radial component of the
induction equation without double curling [Krause,
Rédler, 1980]. The difference is due to the fact that di-
vergence-free of the magnetic field is a fundamental
law, but divergence-free of the momentum density is a
consequence of the anelastic approximation. Curling the
motion equation filters out the potential forces. The
equations for the large-scale flow in terms of the scalar
flow potentials are rather bulky. They are given in the
Appendix.

A unique solution of the model equations demands
the boundary conditions. Natural conditions for the
large-scale flow are zero cross-components of the stress
tensor, R, = R4 =0 at the low (r;) and upper (ry)

boundaries of the simulation region. The low boundary
is placed at the base of the convection zone; and the
upper one, at a small depth below the photosphere
(r, =0.97R,, in the present model if another value is

not specified). These boundary conditions require the
surface density of tangential external forces equal zero.
This means that the large-scale flow is controlled by
internal processes inside the convection zone, not im-
posed externally. An equivalent formulation of the
stress-free conditions as

Ry 6(sin SRHP) ~
60} 09
2R . o(sin9R,y)
f6l0) 09

leads, in view of Equations (14), (17), and (18), to the
conditions for the flow potentials:

(20)
=0

(rU-2w)+Qr?x
x[ cos 9, +(cos 9/3+2c0s’ 9/5)A, | =0, (21)
2Q+rD =0,

where U, Q, and D are the new dependent variables,
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1oV, __(AV)_aQ
por' prr or

= Q (22)

The reason for introducing the new dependent variables
is related to the numerical method of the model as ex-
plained below. The closed boundary condition, v,=0,
such that V=0, is also applied to both boundaries.

Spherically symmetric heat flux F*™ (r,)=38F (1),

enters the convection zone through the bottom boundary,
where

Frconv =—pTys l:(¢(Q*>+ CX(I)H ( )COS S)Z_i_

i 108
~C, ¢, (Q")sin 9cos 8?5]

(23)
The surface boundary radiates into surrounding space as
a black body:
L(r,) S
Fov(r,) = 1+4=|. 24
' (2) 47ch2( ij (24)

It is supposed in this equation that the thin layer be-
tween r, and the stellar surface is a perfect heat ex-
changer [Kitchatinov and Olemskoy, 2011].

1.4. Expansion in spherical functions and
angular momentum conservation

Boundary conditions (20) ensure conservation of
angular momentum
rene2n 2 .
M = jﬁ jo _[0 presin9(rxv)dedSdr. (25)
The formulation of this conservation law for the rotating
reference frame has some specifics. Consider a rotating
Cartesian reference frame with the rotation axis z and
equatorial plane (x,y). Let the longitude ¢ in (25) be
measured from the x-axis. Differentiate angular momen-
tum (25) on time, substitute ov/ot from Equation (2),
and integrate the resulting equation by parts. This gives

M,=0,M, =QM M, =-OM,. (26)

= M7 +M] of the an-

gular momentum normal to the rotation axis do not
change with time. The conservation law can be used to
control numerical solutions.

The angular momentum equations can be simplified
by an expansion in spherical functions. Velocity expres-
sion (18) and the equations for the flow potentials (see

M, and the absolute value M,

Appendix) contain ﬂ-operator (19) in multiple. It is
therefore convenient to apply expansion in terms of the
eigenfunctions Y, . (9, ¢) of this operator,

\m (9,0)=2sin(mo)R, ‘m‘(cosS) form <0,
Y, (9, 0)=+2P° (cos9) form=0,

Y, (8 ¢)=2cos(me)P" (cos9) for m>0,

(27)

where overlines mean the normalized functions. In par-
ticular, for the normalized adjoint Legendre polynomi-

- T [ — 2
als B, it means that Io (P,‘m‘ (cos 8)) sin9d 9 =1.
The toroidal flow potential W is expanded as follows,

Zm -M Zlmi,xn,n Yim (9 (P) (28)

and the same for other flow potentials and the entropy.
In this equation, I, =|m| for the entropy and
lin =max(jm[,1) ~ for  the flow  potentials,
I, _L+max(|m| 1)-1,M and L are the model pa-
rameters controlling the number Of harmonics in de-
composition (28). A peculiarity of Equation (28) is that
the maximum azimuthal M and meridional L wave
numbers are not mutually dependent and can assume
arbitrary values. This imparts flexibility to the model
that can be used not only for nonlinear 3D numerical
experiments, but also for simulating the axisymmetric
(M=0) flows and for analyzing the axisymmetric flow
stability to disturbances with moderate m.

Substitution of (28) into (25) shows that only the
modes with I=1 contribute to the angular momentum:

(M, M, M, )=

_%jrf pr? (W1,1 (r),-Wo; (r), Wi, (r))d 4

Decomposition (28) also leads to a useful expression
for the total kinetic energy E, = IpVZdSF/Z,

E,=2m) 1(1+1)x
X.[:{I(I+21)Vl,zm(r)+pQI2,m(r)+pWI,2m(r) dr'

(29)

(30)

pr

which suggests that the kinetic energy is not only a su-
perposition of independent contributions of the poloidal
and toroidal parts of the flow but also splits into the
contributions of individual harmonics from the flow
expansion in spherical functions. It should be noted that
this superposition holds globally for the total energy,
but it is not valid for the local energy density.

Equations (29) and (30) can be applied to diagnos-
tics of numerical computations.

2. NUMERICAL METHOD

Decomposition (28) in spherical functions leads to a
system of partial differential equations in two independ-
ent variables, t and r. The equations are solved numeri-
cally by finite difference methods.

The problem at hand has thin (Ekman) boundary
layers [Durney, 1989]. The finite-difference grid in ra-
dius should therefore be denser near the boundaries. The
grid of N points includes the boundaries ry, r, and in-
termediate grid points

r, = ;{r +1—(r, - )cos( l\_lilzzﬂ

2<j<N-1

The grid is a linear transform of zeros of Chebyshev
polynomials in the range of [-1, 1] to [ry, rp]. This
finite-difference grid worked well in former 2D models

(1)
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[Kitchatinov, Olemskoy, 2011, 2012]. It also permits
computation of integrals (29) and (30) with high preci-
sion by the method of the Gauss-Chebyshev quadrature
[Press et al., 1992]. Coefficients of the model equations
depend on the stellar structure parameters. The parame-
ters are computed with the MESA model [Paxton et al.,
2011]. The MESA results are transformed into grid (31)
by cubic spline interpolation. New dependent variables
U, Q, and D (22) are introduced in order to simplify the
finite-difference derivations. With these variables, the
model equations include the first-order spatial deriva-
tives only, and formulation of the equations for the mid-
points between neighbouring grid points ensures sec-
ond-order precision in radius.

The model is second-order accurate in time also. All
terms in the equations except for the diffusive ones (vis-
cosity and thermal diffusion) were advanced in time
with the second-order Runge-Kutta method. Diffusion is
treated with the Crank-Nicholson method [Press et al.,
1992]. More specifically, the explicit diffusion scheme
is applied with a weight of (1-q) and the implicit one —
with weight g, where q is the model parameter,
0.5<q<1 (the low bound follows from the numerical

stability condition). g=0.501 in the model computations
if another value is not stated. This g-value ensures nu-
merical stability but is close to q=0.5 of the second-
order accurate Crank-Nicholson scheme.

The time-step equals one percent of the rotation period,
At =0.01P_,. The number of radial grid points N=31 gave

rot
a sufficiently good accuracy for the Sun with a rotation
period P,,=25.4 days; increasing N beyond this number did
not change noticeably the results. The presence of Ekman
boundary layers demands an increase in N in proportion to

P_Y2 for shorter rotation periods.

rot

3. FIRST RESULTS

The MESA model for a star of one solar mass and
metallicity Z=0.02 gives R,=1.003R _and luminosity
L.=0.999L for the age of 4.6 Gyrs. The structure of this

star was used in computations for the Sun.

Figure 3 shows relative deviation & (1) from adia-
batic stratification within the convection zone. In accord
with the anelastic approximation [Lantz, Fan, 1999],
radial inhomogeneity of thermodynamic parameters in
the entire convection zone except for a thin near-surface
layer is close to an adiabatic profile.

3.1. Relaxation to an axisymmetric steady
state

Consider first the computations for the initial condi-
tion of zero flow (v=0) and latitude-independent entropy
distribution (12). The maximum wave numbers in ex-
pansions (25) were L=21 and M=5, i.e. the computations
permit deviations from axial symmetry.

As initial angular momentum (25) in our rotating
reference frame is zero, it should remain so according to
conservation rules (26). However, our numerical method
is not conservative in angular momentum. Equations (26)

1078 .

e 3

7[VT—(VT)aal/

10—5§ E

0.75H 0.80 0.85 0.90
r/Rgo

0.95

Figure 3. Normalized deviation from adiabatic stratifica-
tion in the solar convection zone according to Equations (1)
and (9)

were therefore violated in the course of the computa-
tions but the values of M, u M, did not exceed 107 of
the product My=IQ of the convection zone momentum
of inertia I with the angular velocity.

In the course of the runs, the large-scale flow
emerges and then increases due to A-effect (14) and the
baroclinic source of the poloidal flow (see Appendix).
The heat transport anisotropy of Equation (11) induces
the entropy dependence on latitude. Meanwhile, the
flow and entropy conserve the axial symmetry of the
initial state. This means that the “numerical noise” due
to the finite precision of numerical computations does
not produce non-axisymmetric disturbances in the pro-
posed model.

An equatorially symmetric steady state is ap-

proached after the diffusive time R?/v (~10 years).

The results are presented in Figures 4-6. The agreement
with observations weakened somewhat compared to the
axisymmetric steady model by Kitchatinov and Olem-
skoy [2011] but still remains rather close. Figure 4
shows the modelled differential rotation. For comparing
with observations, the angular velocity Q of the refer-
ence frame is added here to the computed rotation rate.
The modelled surface rotation closely agrees with Doppler
measurements by Snodgrass and Ulrich [1990]. The merid-
ional flow of Figure 5 also agrees with seismological de-
tections [Rajaguru, Antia, 2015; Gizon et al., 2020].

The temperature difference 8T =T3S /c, between

the equator and poles is shown in Figure 6 as the func-
tion of radius r. The differential temperature is im-
portant for the thermo-rotational balance in the bulk of
the convection zone and for meridional flow excitation
near its boundaries [Hazra et al., 2023]. Note that the
differential temperature 8T ~1.4Kon the upper

boundary of the simulation domain does not equal to its
value on the photosphere. If the layer from the upper
boundary to the stellar surface is a perfect heat ex-
changer, as assumed in the model, then equal values
have entropy disturbances &S «c 8T /T at the upper
boundary and the surface. The steep temperature de-
crease toward the surface then implies a “not measura-
ble” surface differential temperature of order 0.01 Kelvin.
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3.2. Dynamics of non-axisymmetric disturb-
ances

Other computations use a mixture of the steady ax-
isymmetric solution (see Figures 4-6) with non-
axisymmetric disturbances of the toroidal flow of
1 <m <5 and amplitude ~0.1 of its axially symmetric
part as the initial condition. Nonlinear interactions cause
the non-axisymmetric poloidal flow and entropy dis-
turbances to emerge later on.

In the case of decaying deviations from axial sym-
metry, the computations would show eigenmodes of the
model equations with finite m. However, the computa-
tions revealed a non-axisymmetric instability indicative
of an internal contradiction in the mean-field hydrody-
namics when applied to stellar convection zones. Non-
axisymmetric disturbances initially grow with time.
Then, the growth saturates at some amplitude of irregu-
larly varying with time disturbances. The axisymmetric
part of the solution also attains an irregularly varying
part. This instability is not new [Rudiger, Spahn, 1992;
Tuominen et al., 1994]. By all probabilities, this insta-
bility is thermal convection. This is in particular indi-
cated by the fact that the instability does not develop if
radial velocity is put to zero, v,=0, in the entropy equa-
tion. It is assumed in mean-field hydrodynamics that the
role of turbulent convection is fully accounted for by
introducing eddy transport coefficients. The presence of
convective instability in the model evidences incon-
sistency of such an assumption: the eddy transport coeffi-
cients do not replace convection.

The present instability has been met in the axisym-
metric model of the steady differential rotation [Kitchat-
inov, Olemskoy, 2011] as well. In the model, the insta-
bility was eliminated by applying a sufficiently large
ratio o, r = ¢/ H, of the mixing length to the pressure

scale height, and the closer was the upper boundary r, to
the stellar surface, the larger ay t value was required
for stability. This means that instability is located near
the surface, which has also been notified by Tuominen
et al. [1994]. This can be explained by an increase in
superadiabaticity toward the stellar surface (see Figure
3). An increase in the mixing length reduces entropy
gradient (9) and increases diffusion (8). This is why an
increase in oyt suppresses the instability. It can be
noted that reducing the mixing length near the base of
the convection zone does not provoke the instability
[Kitchatinov, Nepomnyashchikh, 2017]. In the axisym-
metric models, oy t=2.2 ensures stability for
r, =0.97R,. This value of ay.r is also used in the pre-

sent paper. The model is therefore stable with axial
symmetry (see Figures 4-6). The dominant mode of
rotating convection is, however, not axisymmetric (ba-
nana cells [Glatzmaier, Gilman, 1981]). Instability to
non-axisymmetric disturbances therefore remains.

The mean-field hydrodynamics can probably be rec-
tified from the discussed contradiction by allowance for
the dependence of ayr on radius following, e.g., from
minimisation of total (kinetic plus thermal) energy of
convection zone. Such a task should probably be a sub-
ject of a separate work. In this paper, the thermal con-
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vection is excluded artificially by using a fixed steady
entropy distribution obtained in the axisymmetric model
(see Figure 6). Initial non-axisymmetric disturbances
are then decaying with time.

The decay is clearly seen in Figure 7, where the kinetic
energy of the disturbances of different m is shown in de-
pendence on time, separately for toroidal and poloidal parts
of the flow. As the non-axisymmetric disturbances decay,
their nonlinear interactions weaken. The flow modes of
different m then evolve independently because coefficients
of the model equations do not depend on longitude. Even-
tually, the most slowly decaying eigenmode of the model
equations survives for each m. The energy of an

eigenmode depends on time as exp(-2t/1,,), where t, is

the characteristic life-time of the eigenmode. These time
dependences form strait lines in Figure 7. It takes a suffi-
ciently long time for the longest living mode to emerge
from the initial mixture of the eigenmodes. The
eigenmodes’ parameters are given in Table.

Recent observations [Loptien et al., 2018; Mandal
et al., 2021; Mandal, Hanasoge, 2024] discovered r-
modes [Saio, 1982] — horizontal vortices drifting in
longitude — on the Sun. A distinctive feature of r-modes
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Figure 7. Kinetic energy (30) of the toroidal (top panel)
and poloidal (bottom) parts of the flow for different azimuthal
wave numbers m. Energy is given in units of 10% erg

Parameters of non-axisymmetric eigenmodes of large-
scale flow. Lifetime t,,, toroidal-to-poloidal energy ratio
Eto/Epor, and symmetry notations for the equator-symmetric
(S) and antisymmetric (A) modes

m | T, Yyears Etor/Epol Symmetry
1 0.754 45.9 S
2 4.64 21200 A
3 1.22 2080 A
4 2.30 1.00 S
5 0.970 1.24 S

10

is a small value of radial displacements. It can be seen
from Table that a relative small radial (poloidal) flow
was found for m from 1 to 3. The flow patterns for
eigenmodes with m=2 and 3 are demonstrated in Fig-
ures 8 and 9 respectively.

Toroidal vortex flows in these Figures are cen-
tered on the equator and have the so-called sectorial
structure, i.e. they have no nodes of sign reversal in
latitude. This is in qualitative agreement with obser-
vations made by Loptien et al. [2018]. But in view of
the above contradiction, the results of this paper for
non-axisymmetric flows are preliminary. We there-
fore refrain from more detailed comparison with ob-
servations.

CONCLUSION

This paper was aimed at extending the steady dif-
ferential rotation models by allowing for variations
with time and deviations from axial symmetry. The
work suitability is justified by observations of large-
scale vortices on the Sun and by a planned unification
with dynamo models.

The new model for large-scale flows in convection
zones of the Sun and stars has been developed in the
framework of mean-field hydrodynamics and is realized
as a numerical code for solving equations of hydrodynam-
ics and heat transport. The numerical model combines

LATITUDE

200
LONGITUDE
Figure 8. Flow pattern of the eigenmode with azimuthal
wave number m=2 at radius r = 0.9R,. Full (dotted) lines
indicate streamlines of toroidal flow with clockwise (anti-
clockwise) circulation. Radial velocity is coded by color. Am-
plitude of the decaying flow is normalized to 1 m/s

1.0

LATITUDE

-1.0
200
LONGITUDE

Figure 9. The same as in Figure 8 but for m=3
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the spectral decomposition method in horizontal dimen-
sions with second-order accurate finite difference meth-
ods in time and radius. This provides a reliable tool for
further theoretical studies of the Sun and stars with ex-
ternal convection zones.

Our first computations have shown that the axially
symmetric part of computed flow reproduces closely the
differential rotation and meridional flow patterns detect-
ed by helioseismology. At the same time, computations
of non-axisymmetric flows revealed an internal contra-
diction of mean-filed hydrodynamics in its applications
to stellar convection zones, which calls for a revision of
the mixing-length theory. The proposed model can and
should be used in eliminating the contradiction. The
first computations of non-axisymmetric flows have nev-
ertheless demonstrated at least qualitative agreement
with observations of large-scale Rossby waves on the Sun.

This work was financially supported by the Ministry
of Science and High Education of the Russian Federation.
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APPENDIX

EQUATIONS FOR THE TOROIDAL AND POLOIDAL FLOW PARTS

The equation for the toroidal part of the flow can be symbolically written as rr-(VxEquation (2)). In terms of scalar
flow potentials (18) and new dependent variables (22), it reads
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The two first terms on the right side of the equation are the contributions of turbulent viscosity. The next term in the
curly brackets account for the A-effect, the next curly brackets stand for the Coriolis force, and all further terms rep-
resent the nonlinearities. Note that with using new dependent variables (22), the equation contains only first-order
derivatives in radius. This is what the new variables were introduced for.

The symbolic form of the equation for the poloidal flow, rr-[Vx(VxEquation (2)], is more complicated com-
pared with the toroidal one. Accordingly, the equation in terms of the flow potentials is more bulky:
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including the entropy is the baroclinic source of the poloidal flow.
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