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Abstract. A new image enhancement algorithm em-
ploying guided filtering is proposed in this work for
enhancement of solar images and videos, so that users
can easily figure out important fine structures imbedded
in the recorded images/movies for solar observation. The
proposed algorithm can efficiently remove image noises,
including Gaussian and impulse noises. Meanwhile, it
can further highlight fibrous structures on/beyond the
solar disk. These fibrous structures can clearly demon-
strate the progress of solar flare, prominence coronal

mass emission, magnetic field, and so on. The experi-
mental results prove that the proposed algorithm gives
significant enhancement of visual quality of solar images
beyond original input and several classical image en-
hancement algorithms, thus facilitating easier determi-
nation of interesting solar burst activities from recorded
images/movies.
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INTRODUCTION

When acquired and transmitted, images may be
contaminated by noises. Therefore, images are usually
denoised [Lu, Jian, et al., 2008; Sun, Xiaoli, Min Li,
Weiqiang Zhang, 2011; Chen, Bo, et al., 2012; Han, Yu,
et al., 2014; Wang, Jiefei, et al., 2016] before being dis-
played. A Gaussian filter can efficiently eliminate noises
from images, especially addictive image noises, like
Gaussian white noise. However, it may destroy edges of
an image while denosing. The filter implements the im-
age filtering task regardless of image content. Specifi-
cally, its weights for averaging nearby pixels over a pixel
depend only on Euclidian distances of the nearby pixels
to this central pixel. They are independent of intensities
of pixels of an image in processing. Thus, the Gaussian
filter would result in smoothed edges as it is across
edges. To overcome this shortcoming of the filter, it
should depend on the image content, i.e. the weights
should be given not only by pixel position but also by
pixel intensities of an image. For this purpose,
edge-preserving filters have been developed and widely
used for image processing. It can well preserve edges of
objects in an image while denosing it.

A bilateral filter is the most popular of
edge-preserving filters [Tomasi, Manduchi, 1998; Chen
Xu, Min Li, Xiaoli Sun, 2013]. It is a non-linear,
edge-preserving and noise-reducing smoothing filter for
images. During image processing, the intensity value at
each pixel in an image is replaced by a weighted average
of intensity values of nearby pixels. The weights depend
not only on the Euclidean distance of nearby pixels to the
central pixel, but also on intensity values of nearby pix-

els. We can thus preserve sharp edges in an image while
denosing it. Despite being so popular, the bilateral filter
has a number of flaws. It may suffer from “gradient
reversal” artifacts, as discussed in [Durand, Dorsey,
2002; Bae, Paris, Durand, 2006]. The reason is that when
a pixel (often on an edge) has few similar pixels around
it, the Gaussian weighted average is unstable. In this
case, the filter results may exhibit unwanted profiles
around edges [He, Sun, Tang, 2013]. Another flaw of
this filter is its high computational complexity.

In view of the flaws of the bilateral filter, new designs
of fast edge-preserving filters have been investigated.
The Edge-Avoiding Wavelets (EAW) [He, Sun, Tang,
2013] is O(n) time complexity. The filter kernel size is
powers of two, which limits its application. Another O(n)
time filter is known as the domain transform filter pro-
posed by Gastal and Oliveira in [Gastal, Oliveira, 2011].
There are also some implicit filters in the literature,
which are usually realized in solving optimization prob-
lems [Briggs, Henson, McCormick, 2000; Saad, 2003].
This process is often computationally expensive. He et
al. have proposed a linear translation-variant filtering
with explicit form, called guided filter in [He, Sun, Tang,
2013]. In the guided filter, a guidance image is addi-
tionally introduced to contribute edge preserving along
with the Gaussian filter. It can be the same as the input
image. In this work, we firstly apply the guided filter to a
solar image/video taken by the Atmospheric Imaging
Assembly (AIA) aboard the Solar Dynamics Observatory
(SDO) [http://sdo.gsfc.nasa.gov] for edge-preserving
filtering. Then, we apply the Difference of Gaussian
(DoG) filter to the original input image/video to extract
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details of the image/video. For the image/video en-
hancement purpose, the details are enlarged and then are
combined by the filtered output of the guided filter to
produce the final enhanced image/video.

The rest of this paper is organized as follows. Section I
introduces related works. Section II describes the proposed
image enhancement algorithm. Section III presents exper-
imental results. The final section concludes this paper.

RELATED WORKS

As shown in Figure 1, the Gaussian filter is described
only by a spatial kernel G, (Xi—X;). Its weights are given
by Euclidian distances of the nearby pixels to the current
pixel. Pixels near the current pixel make a greater con-
tribution than those far from the current pixel. To rep-
resent the contribution of pixel intensity to image filter-
ing, another kernel G,(li-lj), named range kernel, is de-
fined. It is designated by an additional guided image I.
This guided filter can be the same as the input image. The
combination of G and G, could filter an image in an
edge-preserving manner, which results in a bilateral filter.

To overcome the gradient reversal artifacts of the bilat-
eral filter, improvements on the bilateral filter result in the
guided filter [He, Sun, Tang, 2013]. It has not only a good
edge-preserving property like the bilateral filter, but also it
does not suffer from the gradient reversal artifacts.

For the integrity of this paper, we outline the basic
principle of the guided filter as follows:

eInput: a guidance image |, a filtering input image p,
and an output image g (I and p can be identical)

*Two assumptions:

1. A local linear model between the guidance | and
the filtering output g: ¢ =a,l, +b,,Vie o, . (a, by) are
linear coefficients assumed to be constant in ®,. Since
Vag=aVl, this linear model ensures that g has an edge

only if | has an edge.

2. Another linear relation between the output g and
the input p: g=pi—; (n represents noise). To solve (a,
by), an optimization is to minimize gi—p; while main-
taining the first linear model as:

E@.b) =D (@l +b —p)’ +ea),

icok

(1)

where € is a regularization parameter penalizing the
large ay.
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Figure 1. Flowchart of a bilateral filter
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*The solution:
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Lk and Gﬁ are the mean and variance of | in w, m|
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At this time, the guided filter behaves as an
edge-preserving smoothing operator. In the case of high
variance, cﬁ >e, a=1; b=0. In the case of flat
patch, Gi < €, &~ 0; by~ . Referring to (3), the first
case can keep the pixel value of edges with high vari-
ance, and the second case is equivalent to an aver-
age/smoothing operator. Thus, the guided filter has a
good edge-preserving property.

IMAGE ENHANCEMENT
ALGORITHM
WITH A GUIDED FILTER

Taking advantage of the guided filter in edge pre-
serving, we propose a new scheme of image enhance-
ment (Figure 2).

First, the input image is processed by the guided fil-
ter, which gives an edge-preserved and smoothed image
(GF(f(x, y)). Second, details of the image, i.c. fine
structures and edges, are derived by superimposing a
DoG filter [Bundy, Wallen, 1984] on the input image. To
enhance the image, the details are further enlarged by
multiplying a scale factor. Then, these two outputs are
combined together to give the final enhanced image. The
reason why we employ DoG for abstracting image details
is that it can provide the details while compressing
noises. DoG is actually composed of two Gaussian filters
with different variances. Thus, the difference between
two Gaussian outputs is the component of details of an
image. The scale factor is set empirically, usually ranges
from 2 to 8. Users can manually set it in our designed
User-Interface (UI) software.

Given the input image f(X, y), output image g(X, Y),
scale factor A and DoG operator with variances of &, and
G5, the proposed image enhancement is implemented by

g(x y)=GF (f(x, y))+1-DoG(f(x,Y)). 4)
The proposed algorithm is applicable to both image and
video. Here, we process AIA images in the extreme
ultraviolet (EUV) wave band. AIA is a part of SDO
launched in 2010. It continuously observes the solar
chromosphere and corona in EUV channels, and pro-
duces high spatial resolution and high dynamic range
images of the chromosphere and corona. These images
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Figure 2. Image enhancement scheme with a guided filter

contain important structural information, which is of
significant importance to reveal astronomical phenom-
ena. This algorithm could improve fine structural details
of an image to make it more attractive to researchers for a
visual analysis. Figure 3 gives an example of AIA im-
ages. It contains fine structural details that demonstrate
how a solar burst behaves. Solar burst movies can rep-
resent the evolution of solar burst activity more clearly.
Figure 4 shows a movie representing a solar burst of an
active region. This movie has strong impulse noise. The
impulse noise can be efficiently removed by a median
filter [Huang, Yang, Tang, 1979]. Figure 4, a presents a
noised image, and Figure 4, b shows a denoised image
obtained using the median filter. After applying the me-
dian filter, the output movie is further processed by the
proposed image enhancement algorithm. In this algo-
rithm, the guided filtering could compress some noises,
especially Gaussian white noise, while preserving edges.
The difference between the two Gaussian filters is that
they can also compress noise as well as output details of
an image. Thus, the proposed algorithm has good prop-
erties of noise suppressing, edge preserving, and detail
enhancement.

EXPERIMENTAL RESULTS

To evaluate the efficiency of the guided filter and the
proposed image enhancement algorithm with respect to
edge preserving, we perform experiments on SDO/AIA
images/videos. Matlab is used to implement the proposed
algorithm. In addition, UI is designed to easily use the
proposed algorithm

We employ the Graphic User Interface (GUI) of
Matlab to design Ul for the proposed algorithm (Figure 5).
Parameters can be set by users. They are explained in
Table. In Table I, the window size indicates the block
size processed by the guided filter; the regularized pa-
rameter represents how strong the edge is kept after filtering
as explained in (3), which usually ranges from 0.1 to 0.4.
The larger &, the less the edges are kept. The enhanced
strength is an amplifier parameter for enhancing image
edges. The larger the enhanced strength is, the stronger the
edges are amplified. The image display panel illustrates the
original image, the filtered image after guided filtering, and
the enhanced image from left to right.

A
- %

A A

Parameters of the proposed algorithm in Ul

Parameter Explain
Window size Processing unit of block size for
guided filtering;
Regularization Lagrange factor (Eq. (4))
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Parameter (&)

Enhance Strength Factor for enlarging detail signal;

Width Width of input video;
Height Height of input video;
Frames Number of frames of input video

To explain how the above parameters affect resulting
images, we change the parameters and obtain resulting
images shown in Figures 6 and 7. For clarity, we change
only one parameter; others are fixed. In Figure 6, only the
window size is changed, other parameters are fixed.
Comparing Figure 6, a and b, we can concluded that a
larger window size leads to less textures remaining on
the solar disk surface. The reason is that the guided fil-
tering is performed on a block basis, and thus a large
block would smooth more textures. From Figure 6, b it
follows that more textures are kept if the window size is
small. If a texture is too heavy to interfere with our
analysis, we should enlarge the window size appropri-
ately to suppress textures. Figure 7 shows enhanced
images as the enhanced strength changes while the
window size is fixed. It can be seen that a high enhanced
strength is better for enhanced images; however, it can-
not be too high, usually lower than 16. Otherwise, noise
would be significant. By comparing and analyzing a
series of SDO/AIA images, we decide on the best pa-
rameter setting: window size=4, =0.2, enhanced
strength=8. All of the following experimental results are
obtained under this parameter setting.

Figure 8 illustrates the experimental results of
SDO/AIA videos, which record the solar burst evolution.
Enhancement of details in each image of the video can
help users to better understand the evolution process of
solar bursts or other activities. From the enhanced image,
shown in the right panel of Figure 8, contours of objects
and fine fibrous structures can be identified more clearly
than original ones.

For demonstrating the superiority of the proposed algo-
rithm, we compare it with the Laplacian sharpening and
Unsharp Mask (USM) algorithms [Kim Sang Ho, Jan P.
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Figure 4. Solar burst movies recorded by SDO/AIA. Original image contaminated by impulse noise (a); image denoised by a
median filter (b)
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Figure 6. Influence of a window size on the resulting image (enhanced strength is fixed to 8, € is fixed to 0.1). Window size = 8 (a);
window size =2 (b)
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Figure 7. Influence of enhanced strength on the resulting image (window size is fixed to 4, € is fixed to 0.1). Enhanced
strength=38 (a); enhanced strength=4 (b).
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Figure 8
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Figure 8 (continued)

Figure 9. Comparison between image enhancement algorithms: original (a); proposed (b); Laplacian (c); USM (d)
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Allebach, 2005; Li Xia, Zheng An Yao, Wen Shu Zhou,
2008; Li Jingna, Li Xia, 2012; Song Huijuan, Jingxue
Yin, Ying Yang, 2013; Sun Jiebao, Jing Li, Qiang Liu,
2014], state-of-the-art algorithms for enhancing image
edges. The resulting images are shown in Figure 9. Re-
ferring to Figure 9, the proposed algorithm can provide a
better image quality beyond the benchmarks. Figure 9, ¢
and d indicate that the edge of the solar disk can be
identified and enhanced respectively by the Laplacian
and USM algorithms; however, fine fibrous structures
indicating pattern and evolution of a solar burst cannot be
identified well, thus leading to failure of enhancement.

CONCLUSIONS

This paper has studied the guided filtering for solar
radio image/video denosing and enhancement. A new
image enhancement algorithm was proposed for image
enhancement by using the guided filtering for edge pre-
serving. It can provide a good perceptual visual quality
for identifying fine fibrous structures of solar bursts so
that we can do a physical or mathematical analysis of
solar activities more easily.
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