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_____________________________________________________________________________________ 

 

Using the three-dimensional model of the high-latitude ionosphere in Euler variables, which takes into 

account the mismatch between geographic and geomagnetic poles, we study the behavior of the electron 

temperature Te in the F2 region as a function of universal time. We present results of the numerical mod-

eling of spatial-temporal distribution of electron temperature in the F2 region for winter solstice, mini-

mum solar activity, and moderate geomagnetic activity. The electron temperature distribution in the F2 

region of the high-latitude ionosphere in winter is shown to be characterized by a Te increase in dawn 

and dusk sectors. Further, the mismatch between the poles leads to regular longitudinal features in Te 

distribution during Earth’s daily rotation. Thus, at 05 UT, when the Eastern Hemisphere is illuminated, 

the elevated Te zone is formed only in the dawn sector, and at 17 UT, when the Western Hemisphere is 

illuminated such zones are observed in both the sectors. We discuss reasons for the formation of the re-

gions with elevated electron temperature depending on the universal time. Results of numerical experi-

ments are compared with similar results obtained with other models. 

 

Keywords High-latitude ionosphere · F2 region · Three-dimensional model · Rate of heating and cooling 

of electrons and ions · Electron and ion temperatures · Elevated electron temperature regions · Longitudi-

nal features 

_____________________________________________________________________________________ 

 

INTRODUCTION 

 

Mathematical modeling of the high-latitude ionosphere involves the numerical solution of hydrody-

namic equations with due regard to the mismatch between geographic and geomagnetic poles. This is due 

to the fact that the large-scale structure of the high-latitude ionosphere is controlled by universal time 

(UT-control). Moreover, the mismatch should also affect the thermal regime of the high-latitude iono-

sphere. Therefore, when calculating spatial-temporal distribution of temperature of charged particles, a 

need arises to make allowance for the UT-control. The numerical simulation of thermal regime of the 

high-latitude ionosphere, which is based on the Lagrange approach, has been described in a number of 

papers [Schunk et al., 1986.; Klimenko et al., 1991; Mingalev et al., 2002], which analyze, in particular, 

causes for the formation of “hot spots” ( T e ≥5000 K) [Koffman, 1984].  
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In this paper, we study the mismatch between the geographic and geomagnetic poles in the distribu-

tion of electron temperature in the F2 region of the high-latitude ionosphere in winter, using the Euler 

approach. This study relies on a three-dimensional model of the high-latitude ionosphere in Euler varia-

bles, which accounts for the thermal regime of the ionosphere. We make allowance for the mismatch be-

tween the geographic and geomagnetic poles, which produces the longitudinal effect in electron density 

distribution [Kolesnik et al., 1983]. We report the results of calculations of the spatial-temporal distribu-

tion of electron temperature in the F2 region for 05 and 17 UT when the Eastern and Western hemi-

spheres are on the illuminated side. The calculations are made for winter solstice conditions, minimum 

solar activity, and moderate geomagnetic activity. 

 

MODEL OF THE HIGH-LATITUDE IONOSPHERE 

 

The model of the high-latitude ionosphere enables us to describe ionospheric plasma at a height 

range 120 ÷ 500 km. It has the following set of parameters: densities of electrons ne, ions n (O+), and 

basic neutral particles n(O), n(O2), n(N2), as well as temperatures of electrons Te, ions Ti, and neutral par-

ticles Tn. In the height range considered, we can take the condition of plasma quasi-neutrality n(O+) = ne. 

We use a spherical geographic coordinate system: r is a radius, θ is a colatitude, φ is a longitude. The 

model equations are written in the form presented in [Kolesnik et al., 1993]. 

 

To determine the O+ ion density, we use the continuity equation for O+: 
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where q (O+) and l (O+) are rates of local formation and losses of O+, cm–3·s –1; uir, uiθ , and uiφ are com-

ponents of the velocity vector of O+, cm·s–1; RE is the Earth radius. 

 

Electron temperature distribution in the high-latitude ionosphere is calculated from the thermal con-

ductivity equation for electrons: 
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where uer, ueθ , and ueφ are components of electron velocity vector, cms·s–1; λe is the heat transfer coeffi-

cient of electrons; Qeλ is the rate of local photoelectron heating of electrons, erg cm–3·s–1; Qep is the rate of 

charged-particle heating of electrons, erg cm–3·s–1; Len and Lei are rates of local heating or cooling of elec-

trons due to elastic and inelastic collisions with neutral particles and ions respectively, erg cm–3·s–1. 

 

The ion temperature is found from the thermal conductivity equation for ions: 
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where λi is the heat transfer coefficient of ions; Qie, Lin are rates of local heating or cooling of ions O+ due 

to interaction with electrons and neutral particles, erg cm–3·s-1; Qid is the rate of O+ heating by electric 

fields and thermospheric winds respectively, erg cm–3·s–1. 

 

The equations for the components of O+ velocity vector are defined as 
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where Tp = Te + Ti; Hp = kTi/(m(O+)g); k is the Boltzmann constant, erg·K–1; g is the gravitational acceler-

ation, cm·s–2; Eθ and Eφ are the meridional and zonal electric field components respectively, V·cm–1 ; H is 

the geomagnetic field strength, Oe; Da is the ambipolar diffusion coefficient, cm2·s–1; I is the geomagnetic 

inclination, deg; unθ is the meridional component of neutral gas velocity, cm·s–1. When deriving (4), we 

drop the vertical electric field component Er as in [Stubbe, 1970]. To fulfill the quasi-neutrality condition, 

we put electron and ion velocities equal to  e iu u
 

. We ignore the zonal thermospheric wind velocity 

component in this article because it is insignificant (directed across geomagnetic field lines) as compared 

to the meridional one. 

 

We focus on the electron temperature and therefore use expressions for  rates of heating and cooling of 

electron gas at heights of the F2 region. In the illuminated part of the high-latitude ionosphere, the main source 

of thermal electron heating is photoelectrons Qeλ formed during photoionization, whereas in the auroral oval it 

is secondary electrons formed during corpuscular ionization Qep. Respective heating rates are specified accord-

ing to [Krinberg et al., 1984]: 

Qeλ=εqph,   

Qep=εqcorp,  (5) 

where qph is the rate of ion formation due to shortwave solar radiation; qcorp. is the corpuscular ionization rate; 
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Thus, it follows that the regions of photoionization and photoelectron heating coincide. The rate of elec-

tron gas cooling due to elastic collisions with O+ has the form [Banks et al., 1973] 
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where M (O+) is the ionic mass O+. Cooling rates of the electron gas when interacting with neutral particles are 

set in accordance with [Schunk et al., 1978]. Temperature and density of neutral components are calculated by 

the thermospheric model NRLEMSIS-00 [Picone et al., 2002]. The electric field of magnetospheric convection 

is specified by Heppner’s model “A” [Heppner, 1977]. Corpuscular ionization is calculated using the Auroral 

Precipitation Model (APM) [Vorobjev et al., 2013], which defines energies and energy fluxes of precipitating 

electrons in the diffusion auroral zone, structural precipitation zone, and soft diffusion precipitation zone, as 

well as the function of ion formation by precipitating particles [Fang et al., 2008]. Wave ionization rates at 

wide solar zenith angles (χ> 75°) are specified according to [Chapman, 1931]. 

 

ALGORITHM FOR SOLVING THE SYSTEM OF MODELING EQUATIONS 

 

To solve the system of modeling equations, we introduce a three-dimensional grid with nodes 

rk, θl, and φj in height, colatitude and longitude respectively, which covers the entire solution domain 

(120 km ≤ h ≤500 km; 0≤ θ ≤50 °; 0≤ φ ≤2π) so that 

r k +1 = r 0 + k ∆r ; θl = l∆θ; φj = j∆φ,  

where h = r 0–R E; r 0 = R E +120 km; ∆r, ∆θ, ∆φ are distances between the nodes (steps) in coordinates r, 

θ, φ respectively; k, l, j are integers that define the position of the nodes.  

 

In the numerical solution of electron thermal conductivity equation (2), we set the following bounda-

ry conditions: at the lower boundary (120 km), high density of neutral gas provides thermal equilibrium 

of charged and neutral particles, therefore we can take the condition Te = Ti = Tn; at the upper boundary 

(500 km), we specify a value of the heat flux due to heat conductivity 

ψ (r , θ, φ, t) = – λe ( Te) || ,  

where λe is the heat transfer coefficient for electrons; at the pole θ = 0°, we use the averaging condition 

   
2π

e θ 0 e0

1
, lim , θ, φ, φ;

2π
T r t T r t d 

   

at the equatorial boundary θ = 50°, we use the results of solution of equation (2), which is one-

dimensional with respect to r; in longitude we set the periodicity condition 

Te (r, θ, φ, t ) = Te (r, θ, φ + 2π, t).  

The algorithm for solving the system of simulating equations as well as the boundary conditions for 

the rest of equations are described in [Golikov et al, 2012.; Gololobov et al., 2014]. For the numerical 
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solution of three-dimensional differential equations (1)–(3), we utilize the method of total approximation 

[Samarsky 1977], in which the solution of three-dimensional differential equations reduces to the succes-

sive solution of a system of one-dimensional equations. Next, for one-dimensional equations, we use fi-

nite-difference approximation followed by reduction to the three-point scheme, which is solved by the 

tridiagonal matrix algorithm.  

 

As the initial condition for n(O+) we use the simple Chapman layer and set electron and ion tempera-

tures equal to the neutral gas temperature (Te = Ti = Tn). The calculations involve the following steps: Δr = 

10 km, Δθ = 2°, Δφ = 10°, Δt = 2 min. On a PC with a 2400 MHz processor and 4000 Mb random-access 

memory, it takes approximately 30 minutes to obtain a periodic solution. 

 

RESULTS OF NUMERICAL CALCULATIONS 

 

To find reasons for the occurrence of features in the spatial electron temperature distribution, first we 

analyze the main processes that cause variations of Te in the F2 region under preset heliogeophysical condi-

tions. Given that areas with elevated Te can also be formed regardless of nonlocal heating [Mingalev, Min-

galeva, 1992], the calculations are made assuming that there are no heat fluxes from the plasmasphere.  

 

Figure 1 illustrates the distribution of the rate of oxygen atom ionization by ultraviolet solar radiation 

(photoionization) (a , b) and the electron density ne (c, d) at a height of 300 km at 05 and 17 UT for the 

conditions of winter solstice, minimum solar activity (F10.7 = 70), and moderate geomagnetic activity (Kp 

= 3) in LT coordinates (longitude) – geographic latitude. Here, electron (ion) densities are plotted as iso-

lines. Concentric circles are geographic latitudes with a 10° step. Numbers near the outer circle designate 

the local time; in brackets, the geographic longitude. Dashed lines indicate the position of terminator at a 

zenith angle χ=90° (upper) and at a given height (lower). The point with two perpendicular lines marks 

the geomagnetic pole. Arrows denote electron velocities caused by the electric field of magnetospheric 

origin. The dash-dot circle indicates the plasmapause position, which corresponds to the equatorial 

boundary of the magnetospheric convection region according to Heppner’s model “A” [Heppner, 1977]. 

At 05 UT, the geomagnetic pole is near the midnight meridian; and at 17 UT, near the midday one. It is 

seen that at 300 km, the terminator and the photoionization boundary move to high latitudes by ~13° 

(Figure 1, a, b). The electron density at 05 UT in the zone between the two positions of the terminator 

falls rapidly, reaching night values in the lower position of the terminator in the near-noon sector (Figure 

1, c). At 17 UT, since almost half of the convection region is on the illuminated side, the electron distri-

bution becomes complicated. Over the polar cap, the tongue of ionization is formed because the daytime 

ionization is brought by antisolar convection to the nighttime side. On the side of low latitudes, the 

tongue is surrounded by trench-like ionospheric troughs in the dawn and dusk sectors. The troughs driv-

en by the transport of weak nighttime ionization by convection to the daytime side extend until almost 

midday (Figure 1, d). At 17 UT, the initiation of corpuscular ionization leads to an increase in ne in the 

convection zone, but the trench-like ionospheric trough in zones of dayside-directed convection remain 

unchanged in the dawn and dusk sectors (Figure 1, e, f). 
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both the terminator positions as in Figure 4, a, b. It is seen that in TDIM at 05 UT at 400 km in the dawn 

sector between the two positions of the terminator, as in Figure 4, a, a zone of elevated Te is formed. Ac-

cording to IRI-2012 data, at 05 UT the epicenter of the elevated Te zone in the dawn sector is located be-

tween the terminator positions outside the convection zone as in Figure 4 a, and at 17 UT inside it, as in 

Figure 4, b. This is consistent with the results of calculations by the model of the high-latitude ionosphere. In 

[Xiong et al., 2013, Truhlik et al., 2012], the IRI model is shown to poorly describe the distribution of ne and 

Te in the sub-auroral and high-latitude ionosphere of the Northern Hemisphere. This is probably responsible 

for the absence of the zone with elevated Te in the dusk sector at 17 UT. The qualitative agreement between 

the calculation results obtained with the three models allows us to state that the main causes for spatial and 

temporal distribution of electron temperature, which we discussed in this paper, are valid. 

 

CONCLUSION 

 

We have studied the spatial-temporal distribution of electron temperature in the F2 region of the 

high-latitude ionosphere, using numerical simulation and the three-dimensional model of the ionosphere, 

built on the basis of the Euler approach. 

 

It has been shown that in the F2 region of the high-latitude ionosphere during minimum solar activi-

ty in winter solstice conditions, the mismatch between the poles leads to regular longitudinal features in 

the distribution of Te during Earth’s daily rotation: at 05 UT, when the Eastern Hemisphere is on the day-

time side, a zone of elevated Te is formed only in the dawn sector; at 17 UT, when the Western Hemi-

sphere is illuminated, in both the sectors. In this case, the mechanism of formation of these zones with 

elevated Te is as follows: in the absence of a heat flux downflow in the dayside ionosphere in regions of 

electron density troughs, where the electron gas cooling rate is lower than that outside them, T e increases. 

This is consistent with [Schunk et al., 1986]. Further, we have demonstrated that causes of the formation 

of electron density troughs at different longitudes differ. So, at 05 UT, a trough near the terminator in the 

Eastern Hemisphere develops from the rapid attenuation of solar ionizing radiation at x>90° when the 

convection zone related to the geomagnetic pole is on the nighttime side. At UT 17, when this zone is 

partially illuminated in the Western Hemisphere, troughs are formed in the dawn and dusk sectors due to 

the transport of the weak nighttime ionization to the daytime side by convection, therefore at this moment 

of universal time we can expect formation of two zones of elevated Te. 

 

Finally, let us note that the numerical model of the high-latitude ionosphere described in this paper 

can be used to study its thermal regime, in particular, to examine causes of the formation of hot spots ob-

servable at heights of the F2 region. 
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