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Abstract. We have studied propagation of hydromag-
netic (MHD) waves in one-dimensionally inhomogene-
ous finite pressure plasma with curved field lines. Mag-
netic surfaces are considered to be concentric cylinders,
where the cylinder’s radius models the radial coordinate
in Earth’s magnetosphere. The waves are supposed to be
azimuthally small-scale. In this approximation there are
only two MHD modes — Alfvén and slow magnetosonic
(SMS). We have derived an ordinary differential equa-
tion for the spatial structure of the wave field in this
model. We have examined the character of the singularity
on the surface of Alfvén and SMS resonances and the in-

fluence of field line curvature on them. We have deter-
mined wave transparent regions. The SMS transparent re-
gion was found to essentially broaden as compared to the
straight field line case. The very existence of the Alfvén
transparent region is caused by the field line curvature
and finite plasma pressure; otherwise, the wave structure
is represented by a localized resonance.

Keywords: MHD waves, cylinder model of the mag-
netosphere, MHD resonances.

INTRODUCTION

Ultra-low frequency (ULF) waves with large azi-
muthal wave numbers are observed in near-equatorial
regions of the magnetosphere, characterized by a rela-
tively high plasma pressure (the ratio of plasma pressure
to magnetic pressure B~1) and significant field line cur-
vature [Agapitov, Cheremnykh, 2011; Moiseev et al.,
2016; Rubtsov et al., 2018a]. These waves are generated
due to injection of high-energy particles into plasma
[Guglielmi, Zolotukhina, 1980; Mager, Klimushkin,
2007; Kostarev, Mager, 2017]. In recent years, azimuth-
ally small-scale waves have been extensively studied
using radars [Berngardt, 2017; Chelpanov et al., 2018]
and satellites [Leonovich et al., 2015; Mager et al.,
2018; Takahashi et al., 2018]. The development of the
theory of such waves is a topical problem of space
plasma physics because they may be responsible for the
acceleration of charged particles in the magnetosphere
[Ukhorskiy et al., 2009] and can serve as triggers of sub-
storms [Rae et al., 2014].

As known, there are three MHD modes: Alfvén, fast
magnetosonic (BMS), and slow magnetosonic (SMS).
When accounting for plasma inhomogeneity, these modes
are coupled, i.e. they cannot propagate independently of
each other. The simplest model of the magnetosphere is a
one-dimensionally inhomogeneous model with straight
field lines, which takes into account only magnetospheric
inhomogeneities across magnetic shells (box model)
[Southwood, 1974; Chen, Hasegawa, 1974; Mazur,
Chuiko, 2013]. This model has established the Alfvén res-
onance, the essence of which is as follows. Processes at the
magnetospheric boundary generate a FMS wave propagat-
ing deep into the magnetosphere. On a surface located in-
side the magnetosphere, the FMS wave is reflected. Part of
FMS energy, however, tunnels and with an exponentially
decreasing amplitude propagates deeper into the magneto-

sphere until it reaches a magnetic surface, where its fre-
quency coincides with the local frequency of the Alfvén
wave. On a respective magnetic surface there is a sharp
peak of the Alfvén wave amplitude. The azimuthal wave
electric field component as well as the radial magnetic
field and plasma velocity components have a logarithmic
singularity; the radial electric field component and the az-
imuthal magnetic field and velocity components, a pole
singularity.

This model in the case of finite pressure plasma has
been generalized by Yumoto [1985]; the author has
shown that in plasma with >0 there should also be a res-
onance on a magnetic surface, where the wave frequency
is equal to the local frequency of SMS waves. The singu-
larity on this surface appeared to be the same as on the
Alfvén resonant surface.

In the azimuthally small-scale limit, the FMS role can
be ignored because its transparent region turns out to be
localized in the immediate vicinity of the magnetopause
and only an exponentially small part of FMS energy en-
ters the magnetosphere [Guglielmi, Potapov, 1984]. Two
major MHD modes in this case are Alfvén and SMS cou-
pled due to the field line curvature [Southwood, Saun-
ders, 1985; Walker, 1987; Cheremnykh, Parnowski,
2004]. The spatial structure of these modes in a two-di-
mensionally inhomogeneous magnetospheric model with
irregular field line curvature has been studied in
[Klimushkin, 1997; Klimushkin, 1998; Klimushkin et al.,
2004]. It has been shown that in the model there are two
regions of mode localization — Alfvén and SMS trans-
parent regions. Each of them is bounded on one side by
the resonant surface, where the radial wave vector com-
ponent k, becomes infinite, and by the reflecting surface,
where k; becomes zero. In each of the transparent regions,
k?>0. We have studied the wave field singularities on
resonant surfaces. On the Alfvén resonant surface, the
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singularity was the same as in one-dimensionally inho-
mogeneous plasma. On the SMS resonant surface, the
singularity, however, appeared to differ from that in the
one-dimensionally inhomogeneous model.

It is still not quite clear to what extent we can trust the
results obtained in [Klimushkin, 1997; Klimushkin,
1998; Klimushkin et al., 2004] since the mathematical
methods for studying the two-dimensionally inhomoge-
neous magnetospheric model are not sufficiently ad-
vanced. To solve these difficulties, Cheremnykh et al.
[2014, 2016] have examined the cylinder magnetospheric
model, which considers magnetic surfaces to be concen-
tric cylinders and takes into account only the inhomoge-
neity across the magnetic surfaces. Despite its relative
simplicity, this model keeps such basic features of mag-
netospheric plasma as radial inhomogeneity and field line
curvature. At the same time, it can avoid some mathemat-
ical difficulties specific to more realistic two-dimension-
ally inhomogeneous models. The cylinder model was
also used to study MHD waves in the solar corona
[Kaneko et al., 2015, Cheremnykh et al., 2018].

The main results of earlier studies [Klimushkin, 1997;
Klimushkin, 1998, Klimushkin et al., 2004] in terms of Alf-
vén modes have been confirmed. Cheremnykh et al. [2014,
2016] did not, however, treat the SMS spatial structure in
detail. The questions about the match between the cylinder
model and the one-dimensional model of the magnetosphere
studied in [Yumoto, 1985] were not addressed either. In this
paper, we fill this gap.

1. GENERAL EQUATION

ULF waves are usually described using the system of
MHD equations:

)

where ©,J, B are speed, current, and magnetic field; p, P
are plasma density and pressure; E is the electric field; v is

. .d_0 (- L
the heat capacity ratio, e E+(U-V). Linearizing sys-

tem (1), obtain

e LT E Y
%aa_gtl:_[ml], ®
& (V)R -1R (v52), @
B = 2[0axBo (5)

where quantities marked with O represent equilibrium
values v,p,P,J,B,E; and those marked with 1, small
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deviations from equilibrium.

Following [Cheremnykh et al., 2018], we consider the
one-dimensionally inhomogeneous cylinder plasma
model in which magnetic field lines are concentric circles
and all equilibrium values depend only on the radial co-
ordinate r — circle radius (Figure 1).

The coordinate y, directed along the system symmetry
axis plays a role of an azimuth coordinate in the magne-
tosphere. In this model, the magnetic field Bo=(0, Bo(r),
0) and plasma pressure Po(r) satisfy the equilibrium con-

B;

dition
P +—
(2

0
or
Consider a monochromatic wave with a frequency o.
Due to the system symmetry in coordinates ¢ and Y, the
plasma velocity can be written as

_B

dnr’

(6)

ui(r,t) = o (r)e' Y
where ky is the azimuthal wave vector component, N is
the natural number. The role of the azimuthal wave num-
ber m in the cylinder model of the magnetosphere belongs
to m=k yr. The value k=N/r can be regarded as an ana-
logue of the field-aligned wave vector component.

Then motion equation (2) can be written for the com-
ponents as

BO Blr

o BB,
—ipywv,, =0,6P -2——+ik o

Anr

: : . BB, B,
—ipyouy, =ik 8P +ik Z—:—T;ar(rso), @)
k ByBy

—ipyov,, =—ik 6P +i .

Here 8, =0/ 0dr, and P is the perturbation of the to-
tal pressure (the sum of plasma and magnetic pressures):

B,B
P =P +—2"
4n

Figure 1. One-dimensionally inhomogeneous cylinder
model
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Equation (4) yields
5P ——i%ro p _i T,
Q) Q)
®)
1 - - BOBltp
x| =0, (ruy ) +ik vy, +iko, |+ .
r
After transformations in view of (7), we get:
2 _ 2 2 _ 2
8P=p—0(vi+v§) (1)2 w,;(l’) (02 co;(l’) X
0] o -, (r) )l o —o’(r)
va &mz—mf(r)}

v+l T o —ol(r)

4

)

><|:%8r (rvlr)+2

By R

Up,
= = — As

n = , US = Y_’ UC _ﬁ

Jamp, Po JUA +

(10) are the Alfvén, sonic, and slow magnetosonic
speeds,

mA(r)zlﬁUA’ COS(I') =KUS, (Dc(r) =lﬁvc’
(vi +vsz)(lﬁ2 +k§)
2

where v

()= 11)

TR
> .
(’Ui +’U52) (lﬁz +k§)
Below we show that the frequencies ma and o corre-
spond to Alfvén and SMS resonances; frequencies ®x, t0
FMS and SMS reflecting points respectively. To the azi-

muthally small-scale case corresponds ky>>kj. In this
case, the expressions for w. reduce to

o =45 +02) (6 +K).

2
®

o’ :mg 1+—; .
u)+

If we now substitute 6P from (9) in (7), we can derive
a differential equation describing the spatial structure of
Alfvén, FMS, and SMS waves:

o’ -0} )( 0 - o
0, [(vi +U§)Em2 —coi))((mz _QZ;pTOar (ru, )}—Z%X

ol

+Pg (0‘)2 _(D/ZA )Ulr _2P0XPXCU1I' +

(12)

(13)

Poxc o kjuavivy,
+4(m2—m3)(w2—m3)20' (14)

Here y.(r) =—1/r is the function of field line curvature,

Ap (r): Po’lﬁrP0 is the radial scale of plasma pressure

variation. This equation coincides with that derived in
[Cheremnykh et al., 2014], but is written in a more clear
form.

Given the radial velocity component, from Equation (9)
we can find the total pressure perturbation 6P. Next, with (7)

the components v, and iy are expressed through vy, and
oP as follows:

P, (mz - )U1y = ik, wdP.

Note that in the magnetosphere the component vy di-
rected along the binormal to field lines plays a role of the
azimuthal velocity component; and the component v,

a role of the field-aligned component. As readily seen from
(15), the field-aligned velocity component in contrast to the
radial and azimuthal components disappears when the

plasma pressure tends to zero (i.e. when v,—0).

2. ONE-DIMENSIONAL CASE:
NEGLIGIBLE FIELD LINE
CURVATURE

In order to compare with the results obtained by the

cylinder model, we consider first the case of parallel
straight field lines (box model) discussed in [Yumoto,

1985]. Given y_ =0, (14) yields an equation for MHD
modes [Yumoto, 1985]:

22 2
ar (Ui +U52) E(:O)Z _Z?))((Z:Z _zzc) poarvlr +

(16)
+P, (mz —coi\)vlr =0.

In this equation there are four specific points determined
by conditions
2 2 2 2

o =w.(r), o =w(r),

B an

0" =0, (r), o =ow.(n).

The solutions of these four equations are the points with
coordinates r¢(m), r(o), ra(w), and r: (o) respectively. At
small values of the parameter 3 and for transversely small-
scale oscillations (ky>>k;) between respective frequencies
there are relations

0,<0 <0, K0,.
In this case, throughout most of the magnetosphere
the functions ®?(r), o’ (r), w4 (r), o> (r) are decreasing

[Moore et al., 1987]. Hence, the point r. should be the
closest to Earth, followed successively by r_, ra, and r
(Figure 2).

llf

\\\
\s

L L= r'a T, r

Figure 2. Graphical solution of Equations (16) and mag-
netic surfaces (one-dimensional model)
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First, examine the region|w—c,

. Jo—o|<o,,
corresponding to the SMS transparent region. In this re-
gion, Equation (16) reduces to the form
o’ —o’(r
o |:powz—() :|_po(iﬂ2+k5)“1r =0. (18)

If we solve this equation in the WKB approximation,
the radial wave vector component k.(r, ) will be deter-
mined from

kZ(r @) =—(k +k?)

0.,
—(Df(r) r-ir

o’ —o’(r)

o’ —c)i(r)' (19)

Figure 3 plots k?(r,®) as a function of w? Formula

(19) shows that at r; and r- k, becomes infinite and zero
respectively. These points can therefore be called the
SMS resonance point and the SMS reflecting point. The

region between them, where k’ >0, may be referred to

as the SMS transparent region.

The applicability of the WKB approximation to the
SMS-wave localization region deserves a separate discus-
sion. The WKB approximation can be used when a trans-
parent region covers many wavelengths. A necessary (but
insufficient) condition of this phenomenon is the presence
of a large parameter in a wave equation. In the case of Equa-
tion (18), the large parameter is naturally considered to be
ky.

As follows from (13), the very difference o’ —? i,

however, inversely proportional to the square of this quan-
tity:

Thus, with increasing ky the transparent region nar-
rows. As readily seen, the applicability condition of the
WKB approximation has the form
K* 2

Y2 ,,2 2
Ky va +g

Lk

>1,

where L is the typical scale of radially inhomogeneous
plasma. Thus, the WKB approximation is applicable only
to a weakly inhomogeneous plasma when L is very large.

)

!
kr

Y

2
())

2 v
. 7w o

Figure 3. Squared wave vector component as a function of
squared frequency in an SMS transparent region (one-dimen-
sional model)
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In the vicinity of the SMS resonance point r~re,
can employ  the linear  expansion

2
- o, (r,
I ¢, where |, :—#
C [w2r)]
typical scale of magnetospheric parameter variations.

The I; value is of the same order as L. Then, Equation
(18) takes the form

we

is the

r
o’ — o7 (1) =0

1
2
arrulr + r—r arvlr -

C 4

Ulr ' (20)

Here Ac

2
(kjlc)f1 — % is the SMS wave length near
0, —0

the resonant surface (point) rc. The solution of this equa-
tion is zero-order Bessel functions

Jm.{z

where v1 and v are arbitrary constants. Write the as-
ymptotic behavior of this solution for |r —r,| < Ac :

-, -

C

v, =uiK, (2 (1)

C C

r-r
~In, [—=.

Ul r
c

(22)

Thus, in the immediate vicinity of r. the solution has
a logarithmic singularity. This point is the SMS reso-
nance point. When bypassing the logarithmic singularity
to r-r¢<0 there occurs a jump in/2:

r-r. imn
~In |—& - =

A 2

With (15) it is easy to determine the behavior of the
other two plasma velocity components too. The field-
aligned (along the external magnetic field) velocity com-
ponent has a pole singularity:

Lk
Yoror’

v, - (23)

r

The same is true of the component v
the binormal to magnetic shells:

Ac
r—r.

.y, directed along

y

U

The electric and magnetic field components will also
have the singularities:

E

1 = Ely =0, ElgD -~ E0 r_crc .

Now find the solution near the SMS reflecting point
r-when |o—o_| < w,. Inthis case, Equation (18) can be
transformed into

2
ar,Ulr -

%arvlr =223 (r-r)u, =0. (24)
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Here, it is denoted

2
_O‘)C

2
LK

— L

2 =0 (o =-o? /[0*(r)]. This

)

equation is for derivatives of Airy functions. Its general
solution is

v, = aAi’[r;r‘}rbBi’[r;—r‘].

where a_ and b_ are constants, Ai and Bi are Airy func-
tions of the first and second kinds. Dashes denote r-de-
rivatives. Thus, the presence of the singularity at r_ in wave
equation (16) does not lead to a solution singularity.

In the region of Alfvén wave localization when
o~o, and o, <o <K o,, general equation (15) re-

duces to the form
0, [0 —wi (r)]o, vy, —(K; +k?)x
x[coz —h (I’)]v1r =0.

Expanding j (r) in the neighborhood of rara up to

(25)

(26)

the first member 0)2—a)i(l’A)z—[mi(rA)],(r—rA),
get the equation

1

afvlr +__rarUlr _(kj + lﬁz)vlr =0 (27)
A

representing a modified zero-order Bessel equation. Its

general solution is

vy, =’U+|O(.“(5 -Hf (r—rA))+
#0 K (G K7 (1)),

where lo(z), Ko(z) are modified Bessel functions, v,, v_

are arbitrary constants. In the vicinity of the Alfvén reso-
nance, this solution has a logarithmic singularity

vy, ~ In[ k +Kk? (r, —r)}.

According to the singularity bypass rule, the analytic
continuation of this solution to the region r<ra has the
form:

U1r~|n[ k§+lf(r—rA)}—in.

The azimuthal velocity component viy has a pole sin-
gularity:

(28)

(29)

(30)

1
r-r,

r

vy

whereas the longitudinal component v,, has no singular-
ities.
Finally, at a sufficiently high frequency of (0> w,)

Equation (16) reduces to the form

2

2
Up + U

o.p

—A s =0.
"o’ —0l(n)

arvlr + pOUIr (31)
When this equation is solved in the WKB approxima-
tion, the squared radial wave vector component is defined

by the expression
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k2o

r

—(k?+Kk?). (32)

This expression is derived directly from the disper-
sion equation for FMS [Southwood, 1974]. From (32) we
can see that the point r., where the -equality
o’ —o2(r)=0 holds, is the FMS reflecting point be-
cause at this point the radial wave vector component be-
comes zero.

Examine the solution near this point in more detail.
Expanding o2 (r) in series in r=r.,

2 2
Up +’US

o —0t () ~—[02(r)] (r-r)=o?

get
2 1 -3
ar/Ulr _ﬁarvlr +>\’+ (r_r+)vlr =0, (33)
(02
where 1;° =1;' ———. A solution of (33) will be
Uy + U
ulr=a+Ai’[—r_r+J+b+Bi’[—r_r*j. (34)
A, A,

This solution is regular. As in the case of the SMS
reflecting point, the presence of the singularity in the
wave equation does not lead to a solution singularity.

3. AZIMUTHALLY
SMALL-SCALE WAVES

IN THE CYLINDER MODEL

Cheremnykh et al. [2014] have derived a differential
equation used to find the spatial structure of SMS and
Alfvén modes. The question about the SMS spatial struc-
ture was not, however, completely answered. Address
this question in more detail.

In the azimuthally small-scale case (when k, >k ),

the wave frequency is much smaller than the FMS reflect-
ing one: o <K w, . Then, differential equation (14) takes
the form

]

(032 —co,z_\)(mz -]

°)]"T°ar(mh)+

o’ -

2 W2 o’ -0} )(0® -0’
2 2\(,2 2
el )

0 —0®
Here w12 is the solution of the biquadratic equation
Xoke j(mz -’ ) —4y’0*? =0.
0

Write an expression for m1.2:

(mz -3 —2P,

2
()

12

:%[(mi +mf4vfx§)i

(36)
J_r\/((o§ -0’ )2 +8(0)§ +0)f)vczxi +16U§X2:|,



Spatial structure of azimuthally small-scale MHD waves...

where it is denoted
@ =0 +(2R /Py ) Ape- (37)

Expression (35) is in complete agreement with the
equation obtained in [Cheremnykh et al., 2014] for cou-
pled Alfvén and SMS modes.

If the plasma pressure is not very high and the condi-

tion B(xc /k )2 <1, holds, the frequencies w1 can be
written in the approximate form:

i)

2 2 2 2 2 2 2 2
W, = 0, +4y v, _BUAXcXp =0, — 4V,

2 2
v
o =0’ 1—4X°2c
o4

(38)

Hence, the frequency w; is closer to the SMS resonant
frequency @¢; and my, to the Alfvén resonant frequency wa.
From these formulas we can also see that the frequency w1
has always been lower than the SMS resonant one, wi<ao..
However, the frequency w2 may be both higher and lower
than the Alfvén resonant frequency.

First, we consider the solution of this equation in the
WKB approximation. The squared radial wave vector com-
ponent is determined from the relation

, [0)2 —wf(r)] [co2 - (r)]

I(rz (r' co) = _ky 2 2 2 2 : (39)
[(D —wc(r)] [co —ooA(r)J

As we can see, when equalities

=0, (), o=, (r) (40)

hold, the radial wave vector component becomes zero.
Hence, the frequencies w1 and w; represent reflecting fre-
quencies of SMS and Alfvén modes respectively. The
points r; and r; as solutions of (39) will be called reflect-
ing points of SMS and Alfvén modes respectively. Since
throughout most of the magnetosphere the functions
wc(r), oa(r), and m12(r) are decreasing, there is always
the inequality ri<rc. In the case of wa<z, ra<ry; in the op-
posite case of wa>o 2, ra>ro (Figure 4).

Figure 5 plots the squared radial wave vector compo-
nent k?(r) as a function of the squared frequency w2

Panel a corresponds to wa<wgz; panel b, to ma>w,.

Numerals | and 1l denote areas of propagation of SMS
and Alfvén waves respectively. Numeral III refers to fre-
quencies at which wave propagation is impossible. Accord-
ingly, the SMS transparent region is in the range ri<r<r;
the Alfvén mode transparent region, in the range ra<r<r(a)
and r< r<ra (b).

For the Alfvén transparent region the resonant surface
ra is also referred to as the toroidal surface; the reflecting
surface rp, as the poloidal surface [Leonovich, Mazur,
1993]. When k;—o, field lines seem to slide over unper-
turbed magnetic surfaces (cylinders in our case); and
when k=0 they oscillate along the normal to magnetic
shells.

If an opacity region is much wider than the transparent
regions of each of the modes, Equation (35) allows for a
further simplification in the Alfvén and SMS transparent
regions. Consider the Alfvén transparent region in the case

of |w, —,| <o and ©,, ®, > o, o, for large values
of ky. Then Equation (35) reduces to the form
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Figure 4. Graphical solution of Equations (40) and mag-
netic surfaces re(w), ru(), ra(w), r2(w) (the last one is shown in
two cases: ®A< 02 and ®A> ®2)

Figure 5. Squared radial wave vector component as a func-
tion of squared frequency o2 When oxw, » and e~k (T)

have a discontinuity from —o to o, and when passing through
points ®?and > the function k7(r) changes sign

ki(r)<0

-0, [0 —wh(N]0,v, +K; [0 —w}(r) v, =0, (41)

which coincides with the equation for the Alfvén mode
derived in [Cheremnykh et al., 2014]. Since the authors
have carried out a sufficiently detailed analysis of the so-
lution of this equation, we do not dwell on it. We note
only that near the resonant surface there is still the loga-
rithmic singularity of the wave field as in the one-dimen-
sional case:

r—r r—r
v, ~In /—A v, ~In /—A
A ¢ hon
A

where

Ay =k3l, (oai —mg)/wi , = —wi/[mi (rA)] )
azimuthal velocity component v, takes the form

The

1
r—r,

vy,

The electric and magnetic field components have the
form

E, ~ EOK—A, E, ~

A

E,=E

1y —

~E

. 0,E

1o 0

r—ry

Away from the resonant surface, the behavior of the
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wave field appears, however, to be different than in the
one-dimensional case. If in the one-dimensional case the
Alfvén wave is an isolated resonant peak, in the curved
geometry the solution near the resonance point is oscilla-
tory, with the wavelength decreasing as it approaches the
singularity. This is also consistent with the results ob-
tained in [Klimushkin, 1997; Klimushkin, 1998;
Klimushkin et al., 2004] for the two-dimensionally inho-
mogeneous magnetospheric model with variable field
line curvature and longitudinal inhomogeneous plasma.
In this paper, we focus mainly on the SMS transparent

region. Consider the limiting case |o, —w,|<® and

0, 0, K 0,,0,. In this case, Equation (35) reduces to
the form

a[m—m(r)} " 2

o’ -0’ (r) rvs +v?
(42)
o~ (r)|_ . —oi(r)
xvlr8r|:m2 o (1) —k; 7 —oof(r)vlr =0.
Examine the vicinity of re:
lo—o,| <

a further simplification:
o, [0)2 -l (I’)]E)rv1r —k? [wi —? (r)] v, =0. (43)

Near the resonance point r~r; we can expand w¢(r) in
a power series

' r-r
o’ =l (r)~—(f) (r-r)=o’ I . Then dif-
C
ferential equation (43) becomes
r—r
3,0} 5 0rty - K (02 -0} )v, =0. (44)

c

The solution of this equation has the form
(45)
2

. r-r. | . r—r,
UlrzleU[ : J+U2I{ k_}
2

2
Given |r—r,| <, the solution of (45) has the same

where it is denoted D=
logarithmic singularity as in (23):

_ 2
= K2,

~In |—=.

: - (46)

Yy
The field-aligned and azimuthal components of the
displacement have a pole singularity:

A A

C C
vy, ~ .
r—r,

Sets of electric and magnetic fields have the form

E

1r 10 — 0,

—< E
A
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The analytic continuation of this solution is:

r—r
v ~In, [

C

. T

(47)

Consider now the wave field structure near the other
boundary of the SMS transparent region — the turning

point r1. To do this, put |o—o|<|o-o_|,|o—wo,| in

Equation (42). We obtain an equation in the azimuthally
small-scale approximation

o’ —of (r)
afvlr +k50)§T13(r)

Using the linear expansion of the function o} (r)

=0.

‘ (48)

Uy

near the point

_[mf(rl)](r—rl) o? -4

Il

r=r,

®

-ai(r)=
we obtain an Airy equation
afvlr +>‘{3(r_|1)vlr =0,

Where 2,° =klo} /I, (o} o). Find solutions of (49):

= Ai(-2" (r—n))+bBi(-2" (r-1,)).

As for the point r_ (the turning point in the one-di-
mensional case), it is still a singularity of the equation for
SMS and in the curved case, but its meaning changes. In
the vicinity of this point, where

, Equation (35) allows for a

(49)

(50)

further simplification:

2 _2(r 2 2 2
5, "% ) w°()6v 2 Yy, o 2 =1+

r_2 2 rir 2 2 “1r-r
o’ -0’ (r) r i+ )

o’ - (r)
Y e B D S )
Yol —o(r) "
If we linearly expand o (r) near the point r = r_,
Equation (51) can be transformed into

1, 1 .

:arvlr _Warvlr _mvlr =0.  (52)
Here it is denoted
a4 2 v |-
S ]
A s _ (Dc
The general solution of (52) has the form
vy, =(r—r)x
(53)

({5l

where J2(2), Y2(z) are second-order Bessel functions; a, b
are arbitrary constants.
If r—r,

v, ~a(r—r)+b{—1+ r-r

T 2mh-
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Thus, as the point r_ is approached the wave ampli-
tude in the radial displacement component v,, tendsto a

finite value. In the azimuthal component, the wave has,
however, a logarithmic singularity

({53

Y 2m
The azimuthal and field-aligned components of electric
and magnetic fields take the form

Yy

(55)

E, ~B,—2 | (=
amh |\ 24 2
r—r r-r. .m=m

Y Oan( “\/ 2k 2}

E,=0,B, =B, =0,
b

T['“ —%]-

27\

Thus, if in the one-dimensional model the point r_ rep-
resents a reflecting point, in the curved model it is a point of
the secondary (logarithmic) resonance. There is no analogue
of this point in the one-dimensional model.

r—r.

B =
2h_

1o

~B

0

4. DISCUSSION

Compare results of the analysis of the cylinder model
with those of the one-dimensional model discussed in
Section 2 and with those of the dipole model studied in
[Klimushkin, 1997; Klimushkin, 1998; Klimushkin et
al., 2004].

First, examine the Alfvén mode. As we saw in Section
2, in the one-dimensional case the Alfvén mode unlike
SMS has no reflecting surface. Since the difference
o4 —w; is proportional to the plasma pressure, in the

cylinder model, but with a cold plasma, the Alfvén mode
has no reflecting surface either. Thus, for the Alfvén
mode the reflecting surface exists only in the finite pres-
sure plasma with curved field lines. The resonant singu-
larity is logarithmic as in the one-dimensional model, but
the phase jumps by n/2, not by © as in the one-dimen-
sional model. All these results check well with the results
obtained in the dipole model of the magnetosphere,
which takes into account inhomogeneous plasma and
magnetic field along field lines [Klimushkin, 1997;
Klimushkin, 1998; Klimushkin et al., 2004].

The situation with SMS is somewhat different. In the
one-dimensional case, the SMS reflecting surface was
determined by ® = ® (r) and was located more to the
right of the SMS resonant surface. In this case, as the az-
imuthal wave vector component k, increased, the SMS
transparent region narrowed. In the cylinder case, the
SMS reflecting surface was defined by ® = wa(r). In this
case, it is located more to the left of the SMS resonant
surface. The difference between the SMS reflecting fre-
quency and the respective resonant frequency is deter-
mined only by plasma and magnetic field parameters and
does not depend on ky. Thus, the SMS transparent region
in the cylinder model is much wider than in the one-di-
mensional model. This result agrees with the results of
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the dipole model [Klimushkin, 1997; Klimushkin, 1998].

The behavior of the resonant singularity in SMS in
the one-dimensional and cylinder models is the same. In
this case, the dipole model gives different results
[Klimushkin, 1997; Klimushkin, 1998], which is most
likely to be its artifact. Indeed, let us turn again to Equa-
tion (42) for SMS. As already noted, the difference be-
tween ®c and ®_ in the azimuthally small-scale limit
tends to zero. If we also neglect the differences between
o¢ and ws, in the azimuthally small-scale limit the second
term of this equation seems to be ignored as well. Then it
takes the form

, 0 —oof(r)v
y 2 Z(r) ir

_(DC
which coincides with the equation for SMS obtained by
the dipole model in [Klimushkin, 1997; Klimushkin,
1998]. Obviously, the resonant singularity in Equation

(55) has the form v, ~(r—r,)In(r—r,) which differs

from the correct result of (46) v, ~In(r—r,). In addi-

tion, Equation (56) does not contain the secondary (loga-
rithmic) resonance. Thus, we can conclude that the methods
of studying azimuthally small-scale waves in the dipole
model used in [Klimushkin, 1997; Klimushkin, 1998] are
too crude to examine the behavior of SMS near the resonant
surface, although they are quite suitable for studying the
mode near the reflecting surface.

It should be noted that there are two questions con-
cerning the subject matter of this work, which we did
not address in this paper. The first of them is the bal-
looning instability whose development requires curved
field lines and finite pressure plasma [Burdo et al.,
2000; Agapitov et al., 2006; Liu, 1997; Bhattacharjee et
al., 1998; Golovchanskaya et al., 2006]. This instability
occurs in the SMS branch of oscillations during a sharp
decrease in pressure with distance from Earth [Cher-
emnykh, Parnowski, 2004; Mazur et al., 2012; Rubtsov
et al., 2018b]. In this paper, we treat modes resistant to
ballooning perturbations. In addition, in a collisionless
plasma (plasma of Earth’s magnetosphere) the correct
consideration of the finite pressure is possible only
within the framework of kinetics when in the plasma
there may exist ULF modes that do not occur in MHD,
such as drift-compressional and mirror modes [Mikhai-
lovskii, Fridman, 1966; Hasegawa, 1969; Rosenbluth,
1981]. In an inhomogeneous plasma, these modes are
coupled with the Alfvén ones [Chen, Hasegawa, 1991].
This coupling has been studied using the cylinder model
in [Pokhotelov et al., 1985; Woch et al., 1988; Klimush-
kin et al., 2012]; using a more realistic dipole model, in
[Mager, Klimushkin, 2017].

0,0,v, —k

rr 1r =01 (56)

CONCLUSION

The analysis of the cylinder model for one-dimen-
sionally inhomogeneous finite pressure plasma with
curved field lines enables us to do the following.

1. To derive an ordinary differential equation describing
the transverse structure of Alfvén, FMS, and SMS modes.
Using the WKB approximation, we have determined trans-
parent regions of these modes.
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2. To examine singularities on magnetic shells of Alfvén
and SMS resonances in terms of field line curvature and fi-
nite pressure. In the one-dimensional case, the Alfvén wave
is an isolated resonant peak, and in the curved geometry the
solution near the resonance point is oscillatory, whereas the
behavior of the resonant singularity of SMS in the one-di-
mensional and cylinder model is the same. The behavior of
the SMS resonant singularity in the cylinder model differs
from that in the dipole model in [Klimushkin, 1997;
Klimushkin, 1998].

3. To show that the SMS behavior near the reflecting
surface o = w1(r) in the cylinder model coincides with the
behavior in the dipole model. As for the turning point in
the one-dimensional case w=w_(r), in terms of field line
curvature it becomes a point of the secondary (logarith-
mic) resonance for SMS.

The work was performed with budgetary funding of
Basic Research program 11.12. We are grateful to P.N.
Mager for valuable comments and suggestions.
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