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Abstract. We have investigated the relationship of 

variations in >0.7 and >2 MeV electron fluxes of Earth's 
outer radiation belt in a circular polar orbit with solar 
wind and interplanetary magnetic field parameters, as 
well as with geomagnetic indices and the logarithmic 
electron flux in the geostationary orbit in order to ex-
plore the possibility of predicting them. We have select-
ed the optimal input features for predicting electron 
fluxes in low polar orbits, which is important for ensur-
ing the radiation safety of future space missions. 

We have examined integral and maximum electron 

fluxes of these energies over the span of a day. We have 
obtained forecasts with a horizon of 1 and 2 days for an 
interval of 2 months in 2020 for daily maximum and 
integral fluxes based on linear regression. 

Keywords: Earth’s radiation belts, relativistic elec-
tron fluxes, forecasting, machine learning, circular polar 
orbit. 

 
 

 

 

INTRODUCTION 

Radiation conditions in near-Earth space are largely 
determined by charged particle fluxes in Earth's radia-
tion belts (ERB). The contribution of ERB particles is 
especially significant during solar minimum when there 
are practically no solar cosmic ray fluxes. While particle 
fluxes of inner ERB are relatively stable and there are 
generally accepted models that can be used to reliably 
predict particle fluxes in it, Earth's outer radiation belt 
(EORB) is very unstable: its electron fluxes can vary by 
several orders of magnitude within 24 hours. EORB 
electrons were first detected a long time ago — during 
the second space flight in the history of mankind, using 
scientific equipment of SINP MSU [Vernov et al., 
1958]. Since then, a large number of experiments on 
recording EORB electrons by Russian and foreign 
spacecraft (SC) have been carried out [Williams et al., 
1968; Li et al., 2001; Kataoka, Miyoshi, 2008; Kuz-
netsov et al., 2007; Li, Hudson, 2019; Osedlo et al., 
2022; Stepanova et al., 2024]. Nonetheless, the problem 
of reliably predicting the state of EORB through model-
ing has not yet been solved. This is due to the fact that 
to date there is no generally accepted theory of accelera-
tion and scattering of EORB electrons which could ex-
plain the available set of experimental data. 

Monitoring and prediction of EORB electrons is also 
of practical interest since the influence of high fluxes of 
relativistic and sub-relativistic EORB electrons can nega-
tively affect the electronic equipment installed on board 
SC because Single Event Upsets (SEU), both reversible 
and irreversible, can occur when the electrons penetrate 
into integrated circuits [Cole, 2003; Belov et al., 2004; 
Romanova et al., 2005; Iucci et al., 2005; Pilipenko et al., 
2006; Kudela, 2013] (in English literature, they are also 
called killer electrons), SC can be electrified as well 
[Novikov, Voronina, 2021].  

On the one hand, it is impossible to predict with suf-
ficient accuracy variations in EORB electron fluxes 
through theoretical calculations; on the other hand, there 
is a practical need to predict them to ensure radiation 
safety with modern machine learning methods that help 
identify the relationships between analyzed variables by 
approximating empirical dependences. 

Satellite measurements made in Earth's inner magne-
tosphere are employed not only to describe the EORB 
dynamics, but also to develop forecasting models based 
on machine learning. Data from GOES satellites having 
a long time series of experimental measurements is most 
often applied for these purposes because GOES SC have 
been launched since the 1970s (see, e.g., [Wei et al., 
2018; Myagkova et al., 2019; Sun et al., 2021; Landis et 
al., 2022; Son et al., 2022]). Currently, one of the most 
widely used methods for predicting the total relativistic 
electron flux over the span of a day (fluence) in EORB 
is the forecast presented on the portal of the Space 
Weather Prediction Center [http://www.swpc.noaa.gov/]. 
This model, known as REFM (Relativistic Electron 
Forecast Model), was developed based on research evi-
dence [Baker et al., 1990]. The forecast uses the fact 
that daily fluences of >2 MeV electrons, measured in 
geostationary orbit, can be predicted a day ahead with 
the aid of a linear filter, which utilizes the SW velocity 
or the geomagnetic indices Kp and AE as input data. 
Studies have shown the presence of characteristic tem-
poral dynamics in the behavior of electron fluxes in 
geostationary orbit. A significant increase in the elec-
tron flux is observed two days after the SW velocity 
reaches its maximum and three days after recording 
peak values of the geomagnetic indices. This time delay 
is due to the structural features of SW streams, includ-
ing the region of the increased interplanetary magnetic 
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field (IMF) preceding the SW velocity peak. The IMF 
peak initiates geomagnetic activity leading to an in-
crease in Kp. Thus, there is a significant delay between 
the geomagnetic indices (Kp, AE) and an increase in the 
electron flux as compared to direct measurements of 
SW parameters. It is worth mentioning the model for 
predicting >2 MeV relativistic electron fluxes in geosta-
tionary orbit, which is based on solving a system of con-
tinuity equations, provided that particle acceleration is 
affected not only by the SW velocity, but also by geo-
magnetic activity, and losses are influenced by the SW 
density. Taking into account additional factors having 
an effect on electron acceleration and losses in ERB 
made it possible to improve the accuracy and stability of 
forecasts [Lyatsky, Khazanov, 2008]. For low energies 
(1 eV – 40 keV), there is also a forecasting model with a 
1-hr horizon based on IMF and SW velocity [Denton et 
al., 2016]. In addition to solving the continuity equa-
tions, there are other methods for predicting electron 
fluxes. For example, Potapov et al. [2016] employed the 
multiple regression method with a sliding window to 
predict the >1÷2 MeV relativistic electron flux. Particu-
larly noteworthy is the NARMAX model (nonlinear 
autoregression with running mean with external input 
signals) [Balikhin et al., 2011]. One of the stages of the 
algorithm involves analyzing the Error Reduction Ratio 
ERR, which makes it possible to rank the parameters 
affecting fluxes in ERB. It was this analysis that led the 
authors to the conclusion that the SW density, rather 
than its velocity, has the greatest effect on electron flux-
es in ERB. Given a fixed density, the fluxes increase as 
the velocity reaches a certain saturation level decreasing 
with increasing SW density. There is also an approach 
to predicting charged particle fluxes in ERB by the BAS 
Global Dynamic Radiation Belt Model [Glauert et al., 
2014], based on solving the 3D Fokker-Planck equation. 
The developed model relies on a comprehensive ap-
proach to describing the dynamics of charged particles 
and includes the following physical processes: radial 
diffusion of particles in Earth's magnetosphere, parti-
cle—wave interaction, and collisional processes respon-
sible for particle losses from radiation belts.  

A separate problem is to predict fluxes of relativistic 
and sub-relativistic electrons detected in circular polar or-
bits, where the satellite crosses EORB four times during 
one orbital period — twice in the Southern Hemisphere 
and twice in the Northern Hemisphere. For circular polar 
orbits, we can solve the problem of predicting the daily 
maximum electron flux and/or the total flux (fluence), 
which is accumulated over the span of a day at all satellite 
crossings of EORB. 

This study focuses on EORB and variations in 
electron fluxes in the circular polar orbit similar to 
the orbit considered in [Botek et al., 2023]. The au-
thors have predicted electron fluxes with energies 
500–600 keV and 1–2.4 MeV for the circular polar 
orbit, using data from PROBA-V SC and the long 
short-term memory (LSTM) model, for which data 
on the satellite's position and the geomagnetic index 
SYM was taken as input parameters. An array of 
measurements for 2015–2018 was used as initial da-

ta. For EORB, the Root Mean Square Error (RMSE) 
was 0.153 for 500–600 keV with a horizon of 1 day. 

The relevance of this study stems from the fact that a 
similar low polar orbit is planned to be employed in the 
Russian Orbital Station (ROS) project. In this regard, the 
development of methods for predicting radiation condi-
tions at such orbits is of considerable practical interest 
for ensuring the safety of SC and crews. 

The purpose of this study is to develop methods for 
predicting variations in >0.7 and >2 MeV EORB rela-
tivistic and sub-relativistic electron fluxes in the circu-
lar polar orbit, utilizing SW, IMF parameters, geomag-
netic indices, and electron flux in geostationary orbit as 
input features, as well as to assess the effectiveness of 
such forecasting. 

 
1. FORECASTING METHOD 

Spacecraft data processing, machine learning model 
training, and forecasting have been carried out with a 
program developed using Python. 

In this paper, we address the problem of predicting 
time series, where the target variable is yt + h, with h be-
ing the forecast horizon (the number of days for which 
the forecast is made), and features are formed based on 
the lags (delays) of the series: 

 1 2 1 2, , ..., , , , ..., ,t t t t p t t t pX y y y F F F        

where Ft is a time series of additional features, such as 
SW parameters, etc., and p is the number of lags. The 
prediction formula in the general form is 

  ,t h ty f X    

where f is a prediction function. 
We have employed a machine learning model (linear 

regression) to predict electron fluxes in the circular polar 
orbit. Linear regression is a regression model used in sta-
tistics for the dependence of one (explicable) variable y


on 

another or several other variables X


with a linear depend-
ence function.  

1 1 2 2 0... ,i i i m miy a X a X a X a       

where i is the observation number; 0 1, , ..., ma a a are the 

parameters to be estimated (for more detail, see 
[Demidenko, 1981]). 

In order to compare the quality of forecasts, made 
using linear regression in the future, we produced a 
forecast with a naive model. The naive forecasting 
model is a model whose value at a forecast point is 
equal to the last known value of the predicted variable. 

 
2. INPUT DATA 

We have selected the following features as input data 
for forecasting. 

1. SW parameters at the Lagrange point L1 be-
tween Earth and the Sun: SW velocity and density ob-
tained by SWEPAM (Solar Wind Electron Proton Alpha 
Monitor) during the experiment on ACE SC. 

2. IMF parameters: the field vector magnitude Bt and 
Bz obtained by the ACE MAG magnetometer. 
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3. Geomagnetic indices: Dst and Kp from the World 
Data Center for Geomagnetism (Kyoto). 

4. Logarithm of maximum and integral electron 
fluxes over the span of a day in EORB (>0.8, >2 
MeV) from GOES measurement data. 

We have used three-hour Kp, hourly Dst, and other 
features averaged over 1 min. The maximum flux was 
defined as the largest 1-min average for each parame-
ter for each specific day. 

The data was acquired from open sources, namely 
from the SINP MSU Space Weather Data Analysis Cen-
ter [https://swx.sinp.msu.ru/]. 

Data from the first three stations was converted to 
daily values by calculating the mean and the maximum 
magnitude per day. After such conversions, the num-
ber of features doubled. Later, we analyzed the signifi-
cance of each of these features, and left only one of 
two similar variants for each of them. 

The choice of the first three stations is based on the 
experience of forecasting the daily average flux in geo-
stationary orbit in [Koons, Gorney, 1991; Ling et al., 
2010], as well as in recent works by the SINP MSU 
research team [Myagkova et al., 2021; Kalegaev et al., 
2019, 2023]. 

Time series forecasting models are usually trained 
on the τ previous values of the series. τ is called the 
window width. We have adopted a window width of a 
multidimensional time series equal to 26 days. Lags 
equal to 1 (only for the forecast for 1 day in advance), 2, 
3, 4, 5, 6, 7, 13, and 26 days were taken from this win-
dow. The lags corresponding to one week are applied to 
the model to effectively use the current available infor-
mation about the features; the lags equal to 13 and 26 
days are linked to the 25–27 day solar rotation period. 
As shown below, the recurrent fluxes associated with 
solar rotation can have a significant effect on IMF and 
SW parameters, thereby considerably altering charged 
particle fluxes in radiation belts. 

Our work relies on a 9-month data array from June 1, 
2019 to March 1, 2020, which was divided into training 

and test datasets as 7:2. The data from June 01, 2019 to 
December 31, 2019 inclusive was used for the training 
dataset. The data from January 01, 2020 to March 01, 2020 
was utilized as the test dataset — independent data em-
ployed to assess the forecast quality. 

In the study, we selected a limited time interval cor-
responding to the period of minimum geomagnetic ac-
tivity. This approach provided the most stable condi-
tions for conducting a comparative analysis whose main 
purpose was to compare the temporal dynamics of daily 
integral and maximum electron fluxes in EORB at low 
altitudes with the similar dynamics of electron fluxes 
recorded in geostationary orbit.  

This study was carried out taking into account the 
fact that forecasting models of electron fluxes in geo-
stationary orbit based on machine learning methods 
have been developed and successfully operate. 

The training was done on the basis of data on EORB 
electron fluxes, measured by Meteor-M2 (launched on 
July 08, 2014). The forecast was made for daily maxi-
mum and integral electron fluxes in EORB (>0.7, >2 
MeV). The Meteor-M2 orbit is circular and sun-
synchronous, with an altitude at the ascending node 
h=832 km, an inclination i≈98.85°, and an orbital peri-
od T=101.3 min. Thus, during one orbital period the 
satellite crossed EORB four times (Figure 1). 

From the data collected during each orbital period, 
we identified intervals where the McIlwain parameter L 
varied from 3 to 6. Integral fluxes were calculated for 
these intervals, using the trapezoid formula; the daily 
integral flux was obtained by summing integral fluxes 
for each such interval. The daily maximum flux was 
computed as the largest flux recorded on these intervals. 

Note that instead of the fluxes we employed their 
decimal logarithms for both the target variable and the 
features, namely electron fluxes in geostationary orbit. 
This is due to the fact that the fluxes have a wide dy-
namic range occupying several orders of magnitude. 

 

 

Figure 1. Electron fluxes in a circular polar orbit according to Meteor-M2 data (>0.7 MeV) and the McIlwain parameter L 
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3. INPUT DATA ANALYSIS 

During the study, we have analyzed daily integral 
(Figures 2, 3) and maximum (Figures 4, 5) electron 
fluxes from Meteor-M2 and GOES data for >2 and >0.7 
MeV (>0.8 MeV for GOES since there is no channel 
with the required energy threshold in the device). It has 
been found that there is a noticeable correlation between 
these fluxes, the moment of increase on both satellites 
coincides, whereas the decrease in the polar orbit is 
slower and smoother compared to the geostationary one. 

In addition, we have analyzed daily average Dst, Kp, 
SW density and velocity, and IMF vector modulus (Fig-
ures 6–8). During the period considered, average Dst 
did not fall below –40 nT, which indicates the absence 
of strong geomagnetic storms during this period. How-
ever, the SW velocity periodically increased to 600–700 
km/s with a period of ~26 days, which suggests the arri-
val of high-speed recurrent SW streams causing signifi-
cant changes in near-Earth space and an increase in 
charged particle fluxes in radiation belts. 

 
4. SELECTION OF INPUT FEATURES 

The number of features obtained for the specified 
lookback window size is 126. This number may lead to  

overfitting of linear regression on the time interval in 
use, so it is necessary to reduce the number of features. 
It is believed that the number of parameters in the ma-
chine learning model should be at least an order of 
magnitude smaller than the learning sample size [Al-
wosheel et al., 2018]. The corresponding calculation for 
our case (seven months, daily forecast) gives an esti-
mate 10–20 for the maximum number of features. 

The selection is based on the correlation coefficient 
of the feature considered with the target variable. The 
features with maximum (absolute) correlation are used 
for further forecasting. 

The correlation coefficients for the integral electron 
flux with energies >2 and >0.7 MeV are shown in Fig-
ures 9 and 10 respectively. The maximum correlation of 
the >2 MeV integral electron flux is expected to be ob-
served with the GOES integral flux, exceeding all others 
more than three times. This suggests that it is this flux 
which will make the main contribution to the forecast. 
The next most important are also expected to be the SW 
velocity, Kp, and Dst, which is consistent with existing 
concepts. 

 

 

Figure 2. Total integral electron fluxes >2.0 MeV over the span of a day according to Meteor-M2 and GOES-Primary 
data 

 

 

Figure 3. Total integral electron fluxes >0.7 and >0.8 MeV over the span of a day according to data from Meteor-M2 and 
GOES-Primary respectively 



A.O. Belova, I.N. Myagkova 

74 

 

Figure 4. Daily maximum electron fluxes >2.0 MeV according to Meteor-M2 and GOES-Primary data 

 

 
 

Figure 5. Daily maximum electron fluxes >0.7 and >0.8 MeV according to data from Meteor-M2 and GOES-Primary 
respectively 

 

 

Figure 6. Daily average Dst and Kp 

 

 

Figure 7. Daily average SW velocity and density 
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Figure 8. Daily average Bz and Bt 
 

 

Figure 9. Modulus of the correlation coefficient of >2 MeV daily integral electron flux 
 

 

Figure 10. Modulus of the correlation coefficient of >0.7 MeV daily integral electron flux 
 
For an energy of 0.7 MeV, the maximum correlation 

coefficient also belongs to the GOES integral flux, yet 
in this case it slightly exceeds the other coefficients, 
which indicates a higher variability in sub-relativistic 
electron fluxes compared to relativistic ones. 

Note that the daily averages show a higher (abso-
lute) correlation than the maximum values, which con-
firms the need to use them for forecasting. 

 
5. FORECAST RESULTS  

Daily forecasts for integral and maximum electron 
fluxes, made using linear regression and the naive 
model, are shown in Figures 11–18 (k is the number 
of features employed to make this forecast). 

The results of prediction of >2 MeV electron fluxes 
appeared to be much better, which is probably due to 
their higher quasi-stationarity. Maximum fluxes are 
predicted less accurately than integral ones since they 
have a large spread of values over the span of several 
days. 

To assess the quantitative measure of the forecast 
quality, we calculated the multiple determination coeffi-
cient R² and the root mean square error. The calculation 
was made with the test dataset, i.e. the data that was not 
used for training the model. 

To analyze the quality of the model for solving this 
problem, we made a forecast with the aid of the naive 
model and calculated its characteristics. The values are 
presented in Table. The best indicators for each of the 
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forecast horizons and for a given energy are highlighted 
in blue. It can be seen that in all cases the naive forecast 
shows worse results than that made with linear regression. 
It has also been found that for E>0.7 MeV the forecast of 
integral fluxes is better; and for E>2 MeV, the forecast of 

maximum fluxes. With an increase in the forecast horizon, 
a significant deterioration in the quality of forecasts for 
both energy ranges is expected. 

 

 
Metrics of machine learning models 

used in the problem of forecasting >0.7 and >2 MeV electron fluxes 

 Forecast for 1 day Forecast for 2 days 

Forecast of >0.7 MeV daily integral electron fluxes 

Model\Metrics R2 RMSE R2 RMSE 

Naive forecast 0.663 0.325 0.382 0.439 

Linear regression 0.696 0.308 0.550 0.375 

Forecast of >0.7 MeV daily maximum electron fluxes 

Model\Metrics R2 RMSE R2 RMSE 

Naive forecast 0.372 0.471 –0.046 0.608 

Linear regression 0.558 0.395 0.316 0.492 

Forecast of >2 MeV daily integral electron fluxes 

Model\Metrics R2 RMSE R2 RMSE 

Naive forecast 0.819 0.156 0.603 0.232 

Linear regression 0.825 0.154 0.708 0.199 

Forecast of >2 MeV daily maximum electron fluxes 

Model\Metrics R2 RMSE R2 RMSE 

Naive forecast 0.852 0.144 0.721 0.198 

Linear regression 0.888 0.125 0.776 0.177 

 

 

Figure 11. Forecast of >0.7 MeV daily maximum electron fluxes for 1 day 
 

 

Figure 12. Forecast of >0.7 MeV daily maximum electron fluxes for 2 days 
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Figure 13. Forecast of >0.7 MeV daily integral electron fluxes for 1 day 

 
Figure 14. Forecast of >0.7 MeV daily integral electron fluxes for 2 days 

 
Figure 15. Forecast of >2 MeV daily maximum electron fluxes for 1 day 

 

Figure 16. Forecast of >2 MeV daily maximum electron fluxes for 2 days 

 

Figure 17. Forecast of >2 MeV daily integral electron fluxes for 1 day 
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Figure 18. Forecast of >2 MeV daily integral electron fluxes for 2 days 
 

 
CONCLUSION 

The paper presents the results of the study of the 
possibility of predicting variations in >0.7 and >2 MeV 
electron fluxes (with the logarithm of flux) from Earth's 
outer radiation belt, measured in a circular polar orbit. 
The forecast was made using machine learning, where 
the solar wind and interplanetary magnetic field pa-
rameters, as well as geomagnetic indices and the loga-
rithm of EORB electron flux in geostationary orbit were 
used as input features. We have selected optimal input 
features for predicting the electron flux in a low polar 
orbit. It has been found that in the polar orbit the maxi-
mum correlation of the >2 MeV integral electron flux in 
EORB is observed with the integral flux in geostation-
ary orbit (GOES). In combination with the available 
results of prediction of electron fluxes in geostationary 
orbit for several days in advance [Myagkova et al., 
2021; Kalegaev et al., 2023], the formulation of the 
problem of predicting electron fluxes in polar orbits can 
be considered promising.  

From the results received during the study we can 
assume that in order to develop more accurate forecast-
ing models the next possible step should be to expand 
the time series of experimental data in use, as well as to 
examine more complex machine learning models within 
this problem, such as artificial neural networks and gra-
dient boosting. 

The work was financially supported by the Russian 
Science Foundation (Grant No. 22-62-00048) 
[https://rscf.ru/project/22-62-00048/]. 
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