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Abstract. In the paper, we examine the spatial struc-
ture of eigenharmonics of the poloidal Alfvén resonator 
recorded by the RBSP-B satellite on 23 October 2012 at 
19:12–20:24 UT. We employ the method of phase por-
traits, which is a set of plots of magnetic/electric field 
components of oscillations as well as the phase shift 
between transverse components, to interpret the data. 
Based on the theoretical description of magnetospheric 
MHD waves, an analytical solution for eigenharmonics 
of the poloidal Alfvén resonator is framed. The phase 
shift of individual harmonics of the observed oscilla-
tions is shown to have a quasi-periodic structure, which 
allows us to confirm that they have resonator modes, 
and the magnetic field components analytically calcu-

lated along the satellite trajectory qualitatively coincide 
with the satellite data. From comparison of theoretical 
calculations of the structure of transverse magnetic field 
components with observational data, we put forward an 
assumption that the second and fourth harmonics of the 
poloidal resonator make the main contribution to the 
observed oscillations. 

Keywords: Alfvén waves, poloidal resonator, ULF 

waves, satellite observations. 

 

 

 

 

 

 

INTRODUCTION 

Alfvén waves, one of the branches of magnetohydro-
dynamic plasma oscillations, play a significant role in the 
dynamics of the magnetosphere [Keiling, 2009]. Their 
spatial structure is diverse and depends on properties of the 
medium and the wave source. It is customary to distinguish 
two types of polarization of Alfvén waves. Waves with a 
dominant radial (across magnetic shells) magnetic field 
component is called poloidal. Such waves are azimuthally 

small-scale, i.e., their azimuthal wavenumber 1m  [Le-

onovich, Mazur, 1993]. Sources of such waves can be ion-
ospheric currents or resonant interaction with charged 
plasma particles [Leonovich, Mazur, 1996; Lee, Lysak, 
1990]. Waves dominated by the azimuthal magnetic 
field component are called toroidal and they are usually 

azimuthally large-scale  1 .m  Generation of toroidal 

oscillations is more often associated with field line res-
onance (FLR) [Tamao, 1965; Chen, Hasegawa, 1974; 
Southwood, 1974].  

An important plasma characteristic in studying Alf-

vén waves is the Alfvén velocity distribution, defined in 

the Gaussian unit system as A / 4 ,B    where B is 

the magnetic field strength; ρ is the mass plasma densi-

ty. In the transition region between the outer and inner 

magnetosphere, called the plasmapause, due to a sharp 

decrease in plasma concentration in the direction across 

magnetic shells [Kim et al., 2018], the Alfvén velocity 

distribution has two local extremes (minimum and max-

imum). In these regions, Alfvén resonators can be 

formed — regions bounded transversely by turning 

points, and longitudinally (along magnetic field lines) 

by the conductive ionosphere, in which standing waves 

trapped inside can be generated and maintained [Leo-

novich, Mazur, 1995].  

It is worth noting that wave confinement can also 

occur in other regions of near-Earth space [Lysak, Yo-

shikawa, 2006]. The Schumann resonance in the 

Earth—ionosphere system is well known. It plays an 

important role in monitoring global electrical phenome-

na, such as thunderstorm activity [Schumann, 1952]. 

The ionospheric Alfvén resonator (IAR), which is 

formed inside the ionosphere between its base and the 

region above the F-layer maximum, has been thorough-

ly studied [Polyakov, Rapoport, 1981]. Finally, resona-

tors for ion-cyclotron and ion-ion hybrid modes can also 

be formed in the magnetosphere. In the longitudinal 

direction, such waves are trapped between reflecting 

points near the geomagnetic equator [Guglielmi et al., 

2001; Mikhailova et al., 2020]. 
Satellite observations of Alfvén waves in the magne-

tosphere have been conducted for several decades. Mis-
sions such as CLUSTER, Van Allen Probes, THEMIS, 
and others make it possible to detect Alfvén oscillations 
inside the magnetosphere; for example, in the frequency 
range from a few to several tens of millihertz (Pc4-Pc5), 
the fundamental (first) or second harmonics of the 
standing poloidal mode are generally recorded [Min et 
al., 2017; Takahashi et al., 2018]. Nevertheless, Alfvén 
waves have a diverse small-scale transverse structure 
that has not yet been studied in detail by satellites [Sta-
siewicz et al., 2000]. The main problem in determining 
the spatial structure of magnetohydrodynamic waves is 
the fact that satellite measurements are time series of 
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physical parameters related to the satellite's position in 
space. This causes difficulties in trying to unambiguous-
ly separate temporal and spatial variations, which hin-
ders the determination of the spatial wave structure. 
This problem is partially solved by grouping four or 
more instruments [Paschmann, Daly, 2008].  

To identify the small-scale radial (across magnetic 

shells) structures of monochromatic Alfvén oscillations 

from data obtained by one instrument, Leonovich et al. 

[2022] have proposed a phase portrait method. The 

phase portrait of Alfvén wave is a set of plots of mag-

netic (or electric) wave field components and the phase 

shift between transverse magnetic (or electric) wave 

field components. For a monochromatic wave, this val-

ue does not depend on time, azimuthal, and longitudinal 

coordinates, which makes it possible to unambiguously 

determine the transverse structure and type of Alfvén 

oscillations from single-satellite data. Kozlov et al. 

[2024], using the phase portrait method, have first stud-

ied the spatial Alfvén wave structure when polarization 

changes from poloidal to toroidal. In this paper, we ex-

amine the observation of eigenharmonics of the poloidal 

Alfvén resonator formed in the vicinity of a local max-

imum of the Alfvén velocity [Mager et al., 2018].  

The work has the following structure. The first sec-

tion describes the results of observations by the Van 

Allen Probes satellite (RBSP-B), which on October 23, 

2012 at 19:12–20:12 UT recorded Alfvén oscillations in 

a region presumably being the poloidal Alfvén resona-

tor. Next, using the phase portrait method, we analyze 

the behavior of the phase shift between the transverse 

magnetic field components of individual quasi-

monochromatic harmonics. The second section presents 

basic equations describing the spatial structure of poloi-

dal resonator harmonics, and expressions employed in 

analytical calculations of the field structure. The third 

section compares satellite data with analytical calcula-

tions of the structure of eigenharmonics of the poloidal 

resonator. In conclusion, the main results of the study 

are formulated. 

 
1. SATELLITE OBSERVATIONS 

According to [Mager et al., 2018], on October 23, 

2012 at 19:12–20:24 UT, RBSP-B detected an ultralow-

frequency wave with dominant harmonics of 13.6 and 

15.3 mHz. This case is considered as the first observa-

tion of the transverse Alfvén resonator in Earth's magne-

tosphere. This conclusion was made by the authors from 

several factors: 1) during the event, the satellite crossed 

the region of maximum of the distribution of Alfvén 

oscillation eigenfrequencies, and it is in this region that 

the poloidal resonator can be formed in a finite pressure 

plasma; 2) according to analytical estimates, the poloi-

dal eigenfrequency turned out to be higher than the to-

roidal frequency, which is also a condition for forming 

the poloidal resonator in the region of maximum; 3) 

several adjacent frequency harmonics were found. 

The wave source is proton bump-on-tail instability at 
~80 keV. The wave propagated westward, and its azi-
muthal wave number m=–100. 

Figure 1 displays plots for different spatial parame-
ters of the satellite taken directly from the data. A 
change is shown in the McIlwain parameter along the 
trajectory of the satellite that moved into the magneto-
sphere. The MLT value, given in degrees and hours, 
indicates that the satellite was in the dawn sector. Final-
ly, a change in the magnetic latitude MLAT is shown 
from which it follows that the satellite practically did 
not shift in latitude during the event. 

Figure 2 exhibits amplitudes of the magnetic field 

components, as well as their corresponding wavelet 

spectra. For the analysis, data has been used from the 

EMFISIS magnetometer in the GSE (Geocentric Solar 

Ecliptic) coordinate system with an interval of 4 s, to 

which a bandpass filter with 3 and 40 mHz boundaries 

was applied. The background magnetic field B0 was 

determined using the moving average method. Then, 

projections of the perturbed magnetic field were found 

in the coordinate system related to the field line geome-

try: longitudinal — in the direction of the background 

magnetic field l 0 0/ ,e B B  azimuthal — in the direc-

tion l / ,r  e e r where r is the radius vector of the 

satellite location, and radial — in the direction 

r l . e e e  In general, 
r l/ .re r  

The wavelet spectrum and the magnetic field com-

ponents suggest that the amplitudes of the azimuthal 

and radial components are approximately equal and 

significantly exceed the amplitude of the longitudinal 

(compressional) component. This is a characteristic 

feature of the Alfvén wave. Throughout the event, ~8 min 

beats are observed in the spectrum of the radial and 

azimuthal components, which indicates the presence of 

 

 

Figure 1. Parameters related to the location of RBSP-B during the event: a — a change in the McIlwain parameter during the 

event; b — magnetic latitude in degrees (MLAT); c — local magnetic time MLT given in hours (left axis) and degrees (right axis) 
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Figure 2. Magnetic field components in a coordinate system linked to magnetic field lines (a): the radial field component Br 

(across magnetic shells, red curve), the azimuthal component Bϕ (blue curve), the longitudinal component Bl directed along mag-

netic field lines (green curve). The Morlet wavelet spectrum normalized to the response of a single signal (b). At the top is the 

spectrum of the radial magnetic field component Br; in the center is the spectrum of the azimuthal magnetic field component Bϕ; 

at the bottom is the spectrum of the longitudinal magnetic field component Bl 

 

several close harmonics and is one of the signs of the 
presence of a transverse resonator. 

For a more visual representation of the dominant fre-
quencies in the event, Figure 3 shows the spectral signal 
power density, where both peaks in the vicinity of 13.6 and 
15.3 mHz are clearly seen in both transverse magnetic field 
components. In addition to them, other peaks can be ob-
served in each component, but their amplitudes are much 
smaller. 

Figure 4 illustrates initial oscillations of the radial and 
azimuthal components of the perturbed magnetic field and 
the sum of the monochromatic components identified by a 
narrowband Butterworth filter with center frequencies of 
13.6 and 15.3 mHz and a half-width of 1 mHz. 

Applied implementation of the filter involves double 
filtering, which makes it possible to compensate for 
possible phase distortions. 

Let us use the phase portrait method proposed in 
[Leonovich et al., 2022] to verify the assumption that 
observed oscillations are harmonics of the poloidal Alf-
vén resonator. In the coordinate system related to the 
magnetic field, the expression for the phase shift in the 
transverse components has the form 

 
 

r

r

Im /
arctg , 0,1, 2 ...

Re /

B B
n n

B B







      (1) 

A similar expression is derived for the electric field 

components. The addition n  occurs naturally due to 

properties of the function arctg and is necessary to con-
struct a smooth graph without discontinuities. Analytical 
expression (1) is obtained for a complex-valued analytical 
solution. The phase of the observed quasi-monochromatic 
signal can also be determined using different algorithms, 
noteworthy among which is the construction of an analyt-
ical signal via the Hilbert transform. This method of iden-
tifying the signal amplitude and phase has proven itself 
well in studies of geomagnetic pulsations [Glassmeier, 
1980; Cramm et al., 2000; Eriksson et al., 2006]. 

To construct an analytical signal w(t) of an arbitrary 
time series u(t), we use the Hilbert transform [Wakman, 
Weinstein, 1977] 

   
 

   
,

i tu s dsi
w t u t A t e

t s

 


  

   (2) 

where u(t) is the original time series; A(t) is the signal 
amplitude; Φ(t) is the signal phase that can be used to 
build a phase portrait. 

 

 

Figure 3. Spectral power density (SPD) for transverse magnetic field components Bϕ and Br 
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Figure 4. Perturbed transverse magnetic field components 

Br and Bϕ (black lines) and the sum of the selected monochro-

matic components corresponding to spectral density peaks (red 

lines) 

 

Figure 5 depicts the phase shift for the selected qua-

si-monochromatic harmonics obtained from satellite 

data. It is easy to see that the phase difference for both 

harmonics is a sign-changing function, which, in gen-

eral, corresponds to the behavior of the phase difference 

for resonator modes. Leonovich et al. [2022] have 

shown that the phase difference between the transverse 

electric/magnetic field components of the poloidal Alf-

vén resonator harmonic ranges from –π/2 to π/2. In this 

case, the number of zero crossings is 2n+1, where n is 

the resonator harmonic number.  

Note that the maximum amplitudes of the phase differ-

ence in Figure 4 are lower than π/2, but the vibrational 

structure is quite noticeable. As for the number of zero 

crossings (sign changes), for the 15.3 mHz harmonic their 

number is 3, which corresponds to the harmonic n=1, and 

for 13.6 mHz, the number of crossings is 7 (n=3). The 

places where the sign is changed are marked with red dots. 

Transitions located at the end of the interval are ignored 

since they are associated with the edge effects of the Hil-

bert transform. Nonetheless, there are phase oscillations on 

the plots (indicated by a question mark) that do not cross 

zero. It is difficult to say whether it is necessary to take 

them into account for the number of intersections. If we 

assume that such intersections would occur, oscillations 

with a frequency of 15.3 mHz would correspond to n=2 (5 

intersections), and for 13.6 mHz the number of transitions 

would be 9 (n=4). 

Such discrepancies in the behavior of the observed 

phase shift with the model difference constructed within 

the framework of the theoretical resonator model can be 

attributed to various reasons. First of all, the phase shift 

can be affected by the presence of small oscillations in 

the filtered harmonics with frequencies close to the cen-

tral ones, which do not form standing waves. Note that 

the phase shift for Alfvén waves traveling across mag-

netic shells is zero or has a multiple of π. It is unfortu-

nately impossible to identify the contribution of indi-

vidual quasi-monochromatic signal components neither 

in phases of the magnetic field components nor in their 

shift. Note also that the model phase shift is constructed  

 

Figure 5. Phase shift constructed for the 15.3 and 13.6 

mHz harmonics from satellite data. The harmonics were 

identified using a narrowband filter. Red dots mark transi-

tions of phase difference through zero, which are taken into 

account in the calculation. The question mark indicates re-

gions exhibiting phase difference fluctuations that do not 

cross zero. 

 

for the resonator's eigenharmonics. However, in the real 

magnetosphere, eigenoscillations of the transverse reso-

nator should settle after excitation, i.e., form standing 

harmonics. Moreover, Alfvén waves in the magneto-

sphere can lose their energy, for example, due to ohmic 

heating of the ionosphere [Southwood, Kivelson, 2001]. 

If the attenuation is great enough, it can also hinder the 

formation of the resonator's standing harmonics and 

change the behavior of the phase shift between the 

magnetic field components. 

Nevertheless, harmonic phase shift feature an oscilla-

tory structure, which differs fundamentally from the case 

described in [Kozlov et al., 2024]. The authors have ex-

amined the generation of poloidal Alfvén waves on 

neighboring shells in the vicinity of the local maximum 

of eigenfrequency distribution, with the phase shift of the 

transverse components varying monotonously from –π/2 

to 3π/2 over the entire measurement range. Thus, analysis 

of the phase shift in this case allows us to confirm the 

resonatory nature of the observed oscillations, yet it can 

hardly serve as a strict indicator for determining the ordi-

nal number of poloidal resonator modes. 
Next, we will construct an analytical description of 

the spatial structure of the poloidal resonator's eigen-
harmonics, which can be compared with the structure of 
the observed oscillations. 

 

2. ANALYTICAL DESCRIPTION 
OF THE POLOIDAL 

ALFVÉN RESONATOR 

In Earth's magnetosphere, each magnetic shell has its 

own eigenfrequency of Alfvén oscillations that depends on 

plasma parameters. At the same time, there is a region in 

the vicinity of the plasmapause in which the Alfvén veloci-

ty and eigenfrequencies have two extremes (minimum and 

maximum). It is in such regions that the transverse resona-

tor can theoretically exist [Leonovich, Mazur, 1990]. How- 
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ever, this requires that the poloidal ΩPN and toroidal ΩTN 

eigenfrequencies differ significantly from each other. It has 

been found that the polarization splitting of the spectrum 

(the difference between the poloidal ΩPN and toroidal ΩTN 

eigenfrequencies) in the dipole magnetic field is large 

enough only for the fundamental harmonic.  

In the cold plasma approximation  1 , Ω 

TN>ΩPN. Then, the transverse resonator for azimuthal-

ly small-scale waves  1m  can be formed only at 

the minimum of the distribution of poloidal eigenfre-

quencies located inside the plasmapause when the 

transparency region is between two poloidal resonant 

surfaces (Figure 6, a). Klimushkin et al. [2004] have 

shown that the polarization splitting of the spectrum 

directly depends on plasma pressure distribution across 

magnetic shells. In a finite-pressure plasma, a more like-

ly case is ΩPN>ΩTN [Mager, Klimushkin, 2013]. Then, 

the resonator may appear at the maximum of eigenfre-

quency distributions near the outer plasmapause (see 

Figure 6, b). 

To describe the spatial structure of MHD oscilla-

tions, it is convenient to use an orthogonal curvilinear 

coordinate system (x
1
, x

2
, x

3
), where x

1
 is the radial 

component directed across magnetic shells; x
2
 is the 

azimuthal coordinate; x
3
 is the field-aligned coordinate.  

Monochromatic MHD oscillations depending on x
2
 

can be represented as an expansion in harmonics of the 

form 
2

2 ,
i t i k x

e
  

 where k2=m is the azimuthal wave 

vector when x
2
=ϕ. The homogeneous equation describ-

ing the structure of Alfvén waves with 1m  has the 

form [Leonovich, Mazur, 1993] 

   2

1 T 1 2 P
ˆ ˆ 0,L k L       

 
 (3) 

where 
1

1 / ;x     φ is the scalar potential describing 

the Alfvén wave field. Expressions for the toroidal and 

poloidal operators LT(ω) and LP(ω) are defined as 

2 2
1 1

T P2 2

A A

ˆ ˆ, ,L p p L p p
l l l lv v

      
   
   

 (4) 

where 2 1/ ;p g g  vA is the Alfvén velocity; g1, g2, g3 

are metric tensor components. The derivatives are taken 

with respect to the physical length of magnetic field 

lines  3

3 .l dl g dx  The transverse magnetic field 

components in such a coordinate system are expressed 

through the potential φ: 

1 2
1 2 3 2 1 3, ,

g gc c
B k B i

g g
      
 

 (5) 

where c is the speed of light; g=g1g2g3.  

When the longitudinal wavelength is much longer 

than the transverse wavelength, the method of different 

scales can be applied to problem (3). This makes it pos-

sible to reduce the two-dimensional problem to the suc-

cessive solution of longitudinal and transverse prob-

lems. In this case, we are looking for a solution in the 

form of a product of two functions, with U depending 

only on the transverse coordinate x
1
 and describing the 

small-scale structure of the wave across magnetic shells, 

and P describing the large-scale longitudinal Alfvén 

wave structure in the direction x
3
: 

   1 1 3, .U x P x x   (6) 

By definition, there is a relation near the poloidal 

surface 

1 2

1 2

k

g g


 (7) 

and the first term in Equation (3) proves to be much 

smaller than the second, so it can be discarded in the 

main order of the perturbation theory. As a result, the 

longitudinal problem has the form 

 ˆ 0, 0,P l
L


      (8) 

where the boundary condition is written for a perfectly 

conducting ionosphere.  

The solution of problem (8) is a set of eigenfrequencies 

ΩPN and eigenharmonics PN. In the WKB approxima-

tion, the solution of the longitudinal problem in the form 

ˆ 0P NL P   is as follows 

 

 

Figure 6. Typical distribution of toroidal and poloidal eigenfrequencies across magnetic shells in the cold plasma approximation (a). 

Blue and red curves represent the toroidal and poloidal eigenfrequencies. The black dashed line between two P points is a possible region 

of resonator formation between poloidal surfaces. Schematic distribution of the toroidal and poloidal eigenfrequencies in the vicinity of 

the maximum in the finite-pressure plasma approximation (b). Black dashed lines are examples of the poloidal resonator's harmonics 

with frequencies ω0, ω1, and ω2. 
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1/2

A

A A A

sin ,
l

N
l

pv N dl
P

t t v

   
    
   

  (9) 

where tA is the Alfvén wave travel time between magne-

toconjugate ionospheres; N is the number of the longi-

tudinal harmonic. 

The equation for UN describing the transverse wave 

structure with 1m  was obtained in [Leonovich, Ma-

zur, 1993]: 

 
2

P 2 2 2 2 2

1 2 P 2 ,N N N N N Nw U k i U k I       
  

 (10) 

where IN is the multiplier responsible for the external 

source, for example, ionospheric currents; γN is the at-

tenuation decrement, and 
P

Nw  is defined as 

P

A

A

1
.

l

N
l

w v pp dl
t





   (11) 

Introduce a dimensionless variable 

 P P/ ,N Na a     where aPN is the position of the 

maximum in the distribution of poloidal eigenfrequen-

cies; λPN is the characteristic radial scale of the solution. 

In this case, dimensionless equation (10) takes the form 

 
22
P2

2

P

,
NN

N

N

a Id U
U

d
  

  
 (12) 

where  

 
2 22

PP

2 2

P

.
N NN

N

ia   
 

 
 (13) 

If there are no extraneous currents in the ionosphere 

(we assume this since eigenoscillations can be formed in 

the poloidal resonator without an external source), the 

right-hand side of Equation (12) vanishes. In this case, a 

well-known quantum oscillator problem is obtained. Its 

solution [Leonovich, Mazur, 1995]: 

  , 2 1,N N n nU C y n        (14) 

where 

   
2 / 2

1/ 4 / 2 1/ 2

1 1
,

2 !
n nn

y e H
n

  


 (15) 

Hn(ζ) is Hermite polynomials.  

As a result, the scalar potential φ describing the Alf-

vén wave structure with a frequency ω and an azimuthal 

wavenumber m is defined as 

   1 3 1 3, , , , ,i t im

n N nx x t A P x x y e       (16) 

where An is the generalized normalization coefficient. 

Before we move on to comparing analytical results 

with observational data, let us talk about limitations of 

this comparison. Solution (16) is constructed under the 

assumption that the structure of the resonator harmonics 

along field lines is common to the entire resonator and 

has the form of standing longitudinal harmonics PN. 

This assumption is acceptable when considering oscilla-

tions that are rather narrowly localized across field 

lines. The same applies to using the parabolic profile for 

squared eigenfrequency — for an arbitrary function this 

expansion is applicable only in the immediate vicinity 

of the extremum. As shown in Figure 1, in the observa-

tion interval of interest, the satellite recorded Alfvén 

oscillations on shells L=4.6÷5.6, which corresponds to 

the width of the resonator region in the equatorial region 

~RE, with the lengths of dipole magnetic field lines dif-

fering by a factor of 1.2 at the beginning and at the end 

of the interval. We can therefore expect only a qualita-

tive correspondence of the structure of the analytical 

solutions to the structure of the observed harmonics of 

the transverse resonator. 

 

3. ANALYTICAL CALCULATIONS 

To theoretically calculate the field structure in this 

event, expressions obtained from Formula (5) have been 

used. The magnetic field components are expressed in 

terms of the functions PN and yn: 

r ,ni t imN
n nn

Pim
B A y e

a l

   



  (17) 

.ni t imn N
nn

y P
B A e

a l

   



 


 
  (18) 

The poloidal operator eigenfunctions PN, as well as 

the resonator eigenharmonics yn are plotted in Figure 7. 

Referring to Figure 3, the 13.6 and 15.3 mHz har-

monics have comparable amplitudes. Further, in numer-

ical calculations, the amplitudes of both reference fre-

quencies in the spectrum are considered equal 

A15.3=A13.6. For the azimuthal number, we use the esti-

mate m=–100 obtained in [Mager et al., 2018].  

The function yn(ζ) depends on the dimensionless pa-

rameter ζ. Its value depends on the coordinate a of the 

satellite's position and on the characteristic scale of the 

solution λPN. As follows from (17)–(18), the amplitude 

ratio  / / ,rB B m a l   where l is the typical scale of 

change in yn. Fugure 3 shows that the amplitudes of the 

radial and azimuthal components are approximately 

equal, so we can expect that λPN ~l~L0/m, where L0 is 

the position of the center of the resonator. In further 

calculations, we employ the following values of the 

parameters: L0 ≈5.2 RE, λPN ≈L0/45≈730 km. As a result, 

the parameter λPN is selected in such a way that the ratio 

between amplitudes of the radial and azimuthal magnet-

ic field components approximately matches the ob-

served ones; and the radial scale of the solution, the 

scale of the observed oscillations.  

Find the physical value of the magnetic field com-
ponents by taking the real part of (17)–(18). For the 
magnetic field of the harmonic n of the transverse reso-
nator, we have 

r cos ,
2

N
n n n n

Pm
B y A m t

a l

    
    

   
 (19) 

 cos .n N
n n n

y P
B A m t

a l


 
    

 (20) 

Now compare the spatial structure of the observed mon-
ochromatic harmonics of the poloidal resonator with the  
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Figure 7. Poloidal eigenfunctions PN for the first two harmonics n=1, 2 (a); resonator eigenfunctions γn for the first three 

harmonics n=0, 1, 2 (b) 

 
analytical solutions calculated along the satellite trajec-

tory. Figure 8 shows azimuthal components of individu-

al magnetic field harmonics Bϕ. Mager et al. [2018] 

have assumed that the 15.3 mHz harmonic corresponds 

to the resonator mode n=0; and 13.6 mHz, to n=2. The 

analysis of the phase difference between monochro-

matic harmonics has suggested that these are higher 

resonator modes. The red curves enveloping the har-

monics n=2 for the 15.3 mHz and n=4 for 13.6 mHz fit 

best the observations. As part of the study, analytical 

solutions were constructed for other eigenharmonics n, 

but the behavior of their envelopes showed the worst fit 

to observations. For example, we can compare the ana-

lytical solution for n=2 (red curve in the top panel) with 

the 13.6 mHz harmonic envelope (blue curve at the bot-

tom) to make sure that it corresponds much worse to the 

observation than the solution for n=4 (bottom panel). 

The behavior of the envelopes (bold curves) of the 

15.3 mHz harmonic, i.e. the location of amplitude dis-

tribution peaks and the radial scale, proves to be quite 

similar for the observations and analytical solutions. For 

a higher harmonic corresponding to the frequency of 

13.6 mHz, we can also see a similarity between ar-

rangements of the envelope amplitude peaks, but the 

amplitude of the observed component gradually de-

creases by the end of the interval. 

It has to be said the assumption made in [Mager et 

al., 2018] that the harmonics n=0 and n=2 were ob-

served also included estimated resonant eigenfrequen-

cies of Alfvén oscillations. For this purpose, a simpli-

fied version of the formula for resonator frequencies 

from [Mager, Klimushkin, 2013] was used. In full, the 

formula has the form 

   

   
   

2 22 2

P P

2 2
2 2 P T

P 2 2
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1
2 1

2

1
2 1 1 4 ,

2 2 1

n N N

N N
N

N

a n

a n
a n

      

 
   

 

 (21) 

where a=L0/(mΔ L), where ΔL is the half-width of the 

resonator, which for the case in question can be estimated 

as ΔL=0.4RE [Mager et at, 2018]. Assuming that 

ΩTN=αΩPN, we rearrange Formula (21) in the form 

 

Figure 8. Azimuthal magnetic field component Bϕ. The 

blue curve is the component selected by a narrowband filter 

from satellite data; the red curve is the component constructed 

using an analytical solution. Numbers indicate local maxima 

of envelopes 
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 (22) 

From the resulting expression, we can find the pa-

rameter α for an arbitrary ratio between the resonator 

harmonic frequencies 
2 2

1 2 ,n n   and then restore the 

poloidal frequency and its associated toroidal frequency. 

For ω0=15.3 mHz, ω2=13.6 mHz, we get ΩPN=15.95 

mHz, ΩTN=11.9 mHz, which is in complete agreement 

with the estimates [Mager et al, 2018]. For ω2=15.3 

mHz, ω4=13.6 mHz, we obtain ΩPN=19.2 mHz, 

ΩTN=10.9 mHz. The polarization splitting of the spec-

trum, which can be defined as the ratio of the difference 

between eigenfrequencies to their half-sum, becomes 

quite large in the case of harmonics 2 and 4 and 

amounts to 0.55, whereas for 0 and 2 it is smaller, but 

also quite large and approximately equal to 0.29. In cold 

plasma, the fundamental harmonic of Alfvén eigenoscil-
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lations has the largest spectral splitting and it did not 

exceed 0.2 [Leonovich, Mazur, 1993; Kozlov, Leo-

novich, 2006]. Klimushkin et al. [2004] have estimated 

eigenfrequencies in the plasma approximation with the 

kinetic pressure gradient. It appeared that when the po-

loidal frequency becomes higher than the toroidal fre-

quency, polarization splitting can be much larger than 

that in cold plasma (0.5) and depends on medium pa-

rameters. 

Note that this result was obtained exclusively from 

magnetic field measurements, which greatly simplifies 

the analysis. Electric field measurements, on the contra-

ry, are often less stable, subject to various deviations, 

require additional calibration, or are often completely 

unavailable [Breneman et al, 2022]. Thus, this method 

allows us to qualitatively study the spatial structure of a 

wave, using data from a single instrument.  
 

CONCLUSION 

The main results of this work are as follows. 

1. We have analyzed satellite data for the first case 

of observing harmonics of the poloidal Alfvén resona-

tor, using the phase portrait method. The phase shift 

between individual quasi-monochromatic harmonics in 

this case is demonstrated to have a quasi-periodic struc-

ture, which is qualitatively consistent with the analytical 

model of the resonator and suggests that the observed 

oscillations are indeed harmonics of the resonator.  

2. We have compared analytical solutions, based on 

the theory of the poloidal Alfvén resonator, with mag-

netic field measurement data from RBSP-B. It is shown 

that the analytical solutions for the second and fourth 

harmonics of the poloidal resonator respectively are in 

best agreement with the transverse structure of the 15.3 

and 13.6 mHz harmonics.  

3. The comparison of the analytical magnetic field 

components with RBSP-B data and the analysis of the 

behavior of the phase difference allowed us to assume 

that the main contribution to Alfvén oscillations, ob-

served by RBSP-B on October 23, 2012 at 19:12–20:24 

UT, was most likely made by the second and fourth 

harmonics of the poloidal Alfvén resonator. The results 

indicate the possibility of determining the type of Alf-

vén waves and analyzing their radial structure by using 

data from even one spacecraft. 
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