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Abstract. A self-consistent, data-driven approach to 
classifying data obtained at the ISTP SB RAS mid-
latitude coherent scatter radars has been developed. 
Based on 2021 data, a solution of the problem of auto-
matic data classification is presented without their label-
ing by an expert and without postulating the number of 
classes. The algorithm automatically labels the data, 
determines the optimal number of signal classes ob-
served by the radars, and trains a two-layer classifying 
neural network of an extremely simple structure. The 
trajectory calculations use the wave optics method and 
international reference models of the ionosphere and the 
geomagnetic field. The model is trained on signals com-
ing from the main lobe of the antenna pattern. During 
training, to adapt part of the data obtained with im-
proved spectral resolution, it is artificially coarsened to 
the standard resolution. Each signal class determined by 

the neural network is interpreted from a physical point 
of view, using statistical characteristics of the signals 
belonging to it. The number of classes in the data is 
demonstrated to range from 23 to 35. The significance 
of various parameters of the input data is assessed. It is 
shown that the most important parameters for the classi-
fication are the calculated scattering height and the ele-
vation of the trajectory at the scattering point, and the 
least important are the spectral width of the received 
signal and the calculated number of reflections from the 
underlying surface. 

Keywords: decameter radar, SECIRA, ionosphere, 
automatic classification. 

 
 

 
 

INTRODUCTION 
Often, the problem of interpreting data has several 

possible scenarios for their explanation, the choice of 
which may be subjective and depend on an interpreter. 
Thus, it is important for interpretation of the results to 
be independent of the interpreter. The problem can be 
formulated as a data-driven approach — building mod-
els based on objective information contained in the data. 
The paper presents a self-consistent data-driven ap-
proach to solving the problem of classifying processed 
data from ISTP SB RAS coherent scatter radars in terms 
of the radiophysical mechanisms of formation and prop-
agation of these signals. 

The Russian coherent radar network SECIRA 
[Berngardt et al., 2020b] consists of radars similar to 
those of the international network SuperDARN [Green-
wald et al., 1995; Chisham et al., 2007; Nishitani et al., 
2019] in software and hardware. SECIRA radars are 
software-modified CUTLASS stereo radars [Lester et al., 
2004]. Interpretation of received signals usually begins 
with the classification of data into different types (clas-
ses). The main classes of scattered signals are ionospheric 
scatter from magnetically oriented irregularities, scatter-
ing from the underlying surface (Earth and sea), scatter-
ing from meteor trails, near-range echo in the ionospheric 
E layer, etc. [Nishitani et al., 2019]. 

The problem of classifying coherent scatter radar data 
by machine learning methods into two classes (iono-
spheric scatter and ground scatter) has been addressed, 
for example, in [Ponomarenko et al., 2007; Blanchard et 

al., 2009], where it is shown that a very simple model is 
sufficient to divide the data into two classes — just sever-
al free parameters. Ribeiro et al. [2011] use an intuitive 
algorithm for clustering into two clusters, which is basi-
cally similar to the DBSCAN algorithm [Ester et al., 
1996]. Kunduri et al. [2022] employ the DBSCAN ana-
log to divide data into 9 clusters, with the data pre-
converted into probabilities of various classes by a neural 
network model trained on a synthetic dataset generating 
signals of these 9 classes (0.5, 1, 1.5 and 2 hop ionospher-
ic scatter, as well as scattering from the Earth/sea sur-
face). Kong et al. [2024] deal with the problem of cluster-
ing latent representations of signals extracted from them 
by an autoencoder [Rumelhart et al., 1986; Goodfellow et 
al., 2016]. A solution to the more complex problem of 
clustering into 20 classes for the self-learning network 
when clustering trains a classifier has been proposed in 
[Berngardt et al., 2022; Berngardt, 2022]. 

From comparison of the algorithms [Ponomarenko 
et al., 2007; Blanchard et al., 2009] and [Berngardt et 
al., 2022; Berngardt, 2022], it might have been expected 
that the problem of dividing into 20 classes can be 
solved by a model with a relatively small number (sev-
eral hundred) of unknown parameters. However, the 
solution given in [Berngardt, 2022] requires ~30000 
free parameters and the use of a polynomial embedding 
space at the input, which makes the model excessively 
complex. The model is currently employed in ISTP SB 
RAS radars, but its improvement requires answering the 
following questions. 
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1. How to take into account the type of radar and its 
mode of operation when training and using the model? 

2. How to determine the number of classes of scat-
tered signals in data without involving an expert? 

3. What characteristics of the received signal have the 
greatest effect on the quality of its classification? 

The proposed work aims at improving this method. 
It is shown that the application of the data-driven ap-
proach makes it possible to answer the above questions. 

 
SIGNAL PROPAGATION MODEL 
AND INPUT 
MODEL PARAMETERS 

The approach put forward in [Berngardt et al., 2022; 
Berngardt, 2022] involves using unlabeled data to create 
their classifier. The resulting neural network is a scheme 
similar to an autoencoder [Rumelhart et al., 1986; 
Goodfellow et al., 2016], but with multiple decoder 
heads, where each head (decoder) is trained separately 
with labels created by a clusterer for a separate experi-
ment. The decoder head is a fully connected layer 

( )j i j ii
y SoftMax A x= ∑  with nonnegative coefficients 

0i jA ≥  — a projection of a set of hidden classes xi onto 
a set of clusters yj, which is implicitly close to defining 
the total probability through conditional ones. The en-
coder for all autoencoder heads is the same and is the 
required data classifier for hidden classes xi. The 
scheme of the neural network and its training is presented 
in Figure 1, a. It is believed that the autoencoder works 
effectively when the number of hidden classes is not 
smaller than the actual number of variables needed to 
accurately solve the problem [Goodfellow et al., 2016]. 

The approach proposed in [Berngardt et al., 2022] 
consists of two stages. The first stage (clustering) is the 
division of data into slightly overlapping classes. At this 
stage, the Gaussian mixture approach is applied, in 
which it is assumed that the data in each cluster has 
multidimensional Gaussian distribution with unknown 
parameters, their number is 20. Limitations of this ap-
proach include the complexity of its justification: there 
are many different clustering methods, and their choice 
will lead to different data clusterings. Ribeiro et al. 
[2011] employs an algorithm similar to the DBSCAN 
algorithm for clustering into two clusters. Kunduri et al. 
[ 2022] employ a DBSCAN analog to divide data into 9 
clusters (0.5, 1, 1.5 and 2 hop ionospheric scatter, as 
well as scattering from the Earth/sea surface), with data 
pre-converted into probabilities of various classes by the 
neural network model. Kong et al. [2024] utilizes the 
AE-K-means algorithm for clustering into two clusters 
(ground scatter and ionospheric scatter), which is a clus-
tering by the K-means method of features extracted 
from data using an autoencoder neural network. There-
fore, the choice of clustering method is subjective and 
depends on the researcher. 

The second stage (classification) of the algorithm 
[Berngardt et al., 2022] involves training the classifier on 
the data labeled at the first stage. Limitations of this algo-
rithm include an unreasonably large neural network that is 
difficult to interpret and an intuitively selected number of  

 
Figure 1. Neural networks and their training method: a is 

a training scheme for a wrapped classifier (encoder). Each 
clusterer and decoder correspond to a single experiment (fixed 
beam, frequency channel, and day). The number of decoder 
and clusterer heads is equal to the number of experiments, 
~15000. Colors indicate different experiments. Detailed archi-
tecture (b) of the wrap used to train a classifier. Detailed archi-
tecture (c) of the neural classifier network (encoder). K is the 
maximum number of clusters after stage 1, M is the number of 
hidden classes in the signal, N is the dimension of the hidden 
layer of the classifier.  

 
classes equal to 20. Note that in other works using neural 
networks, for example, in [Kunduri et al., 2022; Kong et 
al., 2024], the choice of neural network architecture is of-
ten not justified. 

To improve the model within the data-driven approach, 
the neural network architecture and parameters should be 
selected optimal from characteristics of the dataset in use. 

The need for interpretability of the classes into which 
we divide signals requires that the number of hidden clas-
ses be as small as possible and nevertheless sufficient to 
confidently describe our data and predict the results. From 
a mathematical standpoint, the problem reduces to finding 
a neural network of minimum width that ensures the high-
est possible quality of the solution. 

 
STAGE 1. DATA CLUSTERING  

Data used for clustering 
When constructing a classifier as in [Berngardt et al., 

2022; Berngardt, 2022], the following measured and simu-
lated data was applied. Parameters measured by radar: 

1. Time, distance to a scatterer. 
2. The Doppler velocity V and the measured spectral 

width W are determined from the signal by the FITACF 
algorithm [Ribeiro et al., 2013]; the work uses the spectral 
width in the exponential correlation function model (Wl, 
velocity units). 
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3. The elevation angle is found by the algorithm 
[Berngardt et al., 2021] with meteor radar calibration. 

The parameters were obtained by simulating radio 
wave propagation, using the geometric optics approach in 
the model ionosphere described by IRI and IGRF. 

4. The effective scattering height is calculated as a 
result of rectilinear (refraction-free) radio wave propa-
gation. 

5. The slope angle (sine of the elevation angle) of 
the trajectory relative to the horizontal at four points in 
range (1/4, 2/4, 3/4, 4/4 of measured range). 

6. Angle between radio wave propagation direction 
and Earth's magnetic field (angle cosine). 

7. Propagation mode is the number of reflections 
from the underlying (ionospheric) layer or from Earth's 
surface during propagation to a scatterer. 

8. Scattering height. 
Only 10 parameters (2, 4–8) were utilized as input data 

of the classifier in [Berngardt et al., 2022; Berngardt, 
2022]. All 15 were used for clustering. In this work, the 
effective scattering height is excluded from the classifier 
parameters (item 4). 

Radar type in model training  
Only 7- and 8-pulse sounding sequences (most com-

monly used in SECIRA and SuperDARN radars) have 
been applied to model training before. Preliminary analysis 
has shown that when using the full dataset from the ISTP 
SB RAS radars, the prediction result is sensitive to types of 
radars and their operating modes. Therefore, in order to 
build a single model, independent of radar characteristics, 
when preparing data it is necessary to compensate for dif-
ferences in their characteristics and modes. Three main 
differences include the waveform of sounding signals (the 
type of sounding sequence in use affects the spectral reso-
lution [Berngardt et al., 2020a]), the distance between in-
terferometer and main arrays (affects the uncertainty in 
calculating the elevation angle of incoming signal [Milan 
et al., 1997]), and the type of antennas employed (the an-
tenna pattern has an effect on the azimuth and elevation 
angle dependence of signal power). 

The type of antennas in use is the most difficult to 
account for, so it is ignored in this paper. 

Taking into account the sounding signal waveform is 
compensated by augmentation of data and making all data 
statistically similar, regardless of the signal type, and con-
sidering the distance between the arrays is compensated by 
eliminating “bad” signals that do not come from the main 
lobe of the antenna pattern [Milan et al., 1997]. 

Examine augmentation of radar data. Sounding sig-
nals of two main types are most often used in coherent 
SuperDARN radars: the standard 7-pulse signal 
[Barthes et al., 1998] and the 8-pulse katscan [Ribeiro et 
al., 2013], and sometimes the 13-pulse tauscan [Green-
wald et al., 2008]. In SECIRA radars, 10-pulse and 16-
pulse signals are added to them [Berngardt et al., 2020]. 
All of them differ in duration and spectral resolution. 
This especially affects the measurement of the spectral 
width W of received signal: the shortest 7-pulse signal 
gives maximum errors; the longest 16-pulse signal, min-
imum errors. 

There are three main approaches to making the data 
similar regardless of the sounding sequence type: solv-
ing the inverse problem, eliminating non-standard data, 
and intentionally distorting non-standard data. 

The first approach, solving the inverse problem, re-
duces mathematically to the problem of inverting con-
volution and requires remaking the existing data pro-
cessing algorithm FITACF; therefore, it is omitted. 

The second approach is to exclude the spectral width 
from consideration, which is obviously ineffective: in 
all existing SuperDARN/SECIRA signal separation 
algorithms, spectral width plays an important role. 

The approach employed in this work involves deliber-
ate distortion of data obtained with high spectral resolution 
to a state in which it is difficult to distinguish the data from 
that acquired with low spectral resolution. In machine 
learning, such deliberate distortion is called augmentation 
and is widely applied [Shorten, Khoshgoftaar, 2019]. 

Within this approach, all data was reduced to the 
lowest accuracy: the spectral width in the data obtained 
by longer sequences was increased so that the resulting 
spectral width distributions were close to the 7-pulse 
sequence distributions. This approach makes it possible 
to use data obtained with different spectral resolutions 
for training. 

Since 16-pulse and 7-pulse sequences are most often 
exploited in SECIRA radars, an assessment was made 
of necessary additional augmentations of sounding data 
with 16-pulse signals as compared to 7-pulse signals. 
The FITACF spectral width estimation algorithm is 
quite complex, so the necessary spectral width augmen-
tations were determined experimentally according to the 
formula 

16,augm 16 7 .W W W W= + δ ≈  (1) 
Here, W16 and W7 are the spectral width obtained by the 
FITACF algorithm from the measurement data for the 
16-pulse and 7-pulse sequences respectively; W16, augm is 
its augmented value; δW is the desired augmentation. 

Let δW be a random variable with unknown proba-
bility density δW. Then the probability density of the 

augmented spectral width 16, augmW  is a convolution of 

the probability density 16W of the spectral width meas-
ured by the 16-pulse sequence with the probability den-
sity of augmentation δW and should be approximately 

equal to the probability density 7W  of the spectral 
width measured by the 7-pulse sequence: 

( ) ( ) ( ) ( )16, augm 16 7
.W W W WW W W Wδ= ∗ ≈     (2) 

Augmentation distribution (convolution kernel δW) 
was found from spectral width distributions of 16-
pulse sequences and 7-pulse sequences by analyzing 
signals with a low Doppler shift, usually specific for 
ground scatter signals [Blanchard et al., 2009]. For this 
purpose, signals with a Doppler shift of no more than 
30 m/s were selected from ranges 500–1500 km in 
experiments where sounding was carried out with al-
ternating types of pulse sequence. This mode was regular 
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in the EKB radar from April to December 2021. The dis-
tributions are exemplified in Figure 2, a, b. 

The problem of finding the distribution of δW was 
solved by training a neural network consisting of a single 
convolution with a width [–100, 100] m/s without activa-
tion functions. The coefficients of the found convolution 
kernel δW are shown in Figure 2, d in orange. Therefore, a 
random variable was chosen as an augmentation model 
that approximates this distribution well. 

( ) [ ]tan 19 5 м/с .Wδ = η −  (3) 

Here, η is a random variable having a uniform distribu-
tion in the range [0, atan(6)], 

( )( )0, atan 6 .η      (4) 

Parameters of this model were selected manually to 
ensure a satisfactory match between the curves in Figure 
2, d. The use of δW resulted in a close distribution of the 
spectral widths measured by the 7-pulse sequence and 
the augmented data obtained by the 16-pulse sequence 
(see Figure 2, f). 

Figure 2 illustrates the distribution of spectral widths 
of signals received during regular measurements of 16-
pulse and 7-pulse sequences before ( 16

,W Figure 2, c) 

and after ( 16, augm
,W Figure 2, f) spectral width compensa-

tion by the method (1, 3, 4) as compared to the distribu-
tion of spectral widths measured by 7-pulse sequence 

7
.W  
Figure 2, a, b, and e illustrates probability density dis-

tributions in velocity—spectral width coordinates for 
measurements by the 7-pulse, 16-pulse sequences, and for 
the 16-pulse sequence after its augmentation. 

The V, W distributions shown in Figure 2 a for the 7-
pulse sequence are known and were used, in particular, 
to determine the conditions for separating ground scatter 
signals [Ponomarenko et al., 2007; Blanchard et al., 
2009]. A small proportion of negative spectral widths is 
a known error related to the features of the signal pro-
cessing algorithm FITACF. 

Narrowing (see Figure 2, b) of the W distribution 
when measured by a 16-pulse signal as compared to a 7-
pulse signal is associated with a higher spectral resolu-
tion of the 16-pulse sequence. 

Figure 2 indicates that before augmentation the spec-
tral widths obtained by the 16-pulse sequence are much 
narrower than those obtained by the 7-pulse one, and 
augmentation provides distributions for the spectral width 
close to those observed with the 7-pulse sequence.

 
Figure 2. Augmentation of spectral broadening of 16-pulse sequences data derived from EKB radar for 2021. Distribution of 

velocity—spectral width pairs for sequences of two main types — 7-pulse (a) and 16-pulse (b); spectral width distribution for 
data (c); calculated and simulated distributions of the augmenting additive δW (d); distribution of velocity—spectral width pairs 
for the 16-pulse sequence after augmentation (e); spectral width distribution for data after augmentation (f) 
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Peculiarities of data clustering and analysis of 

results 

Clustering is the search for splitting data into clus-
ters that are well interpreted by an observer. Within the 
approach [Berngardt et al., 2022; Berngardt, 2022], it is 
required not only to split data into clusters, but also to 
select their number so that the resulting clustering is 
explicable from the physical standpoint. There are vari-
ous clustering methods [Saxena et al., 2017], each cor-
responds to its own data model and usually requires the 
selection of a hyperparameter on the value of which 
both the splitting and the total number of clusters de-
pend significantly. To correctly solve the problem of 
choosing a clustering method and its hyperparameters, 
two main approaches are generally exploited: using an 
external expert who evaluates the quality of each specif-
ic clustering, or applying a clustering quality metric 
based on a criterion. In both cases, the assessment is 
subjective: each expert can interpret the data in their 
own way, and each quality metric gives its own esti-
mates. The Silhouette coefficient (Rousseeuw, 1987) 
and a family of information criteria, such as the Bayesi-
an information criterion (BIC) [Schwarz, 1978], are the 
most commonly used metrics. The choice of criteria 
often determines the expected form and number of clus-
ters. For example, Kong et al. [2024] compare several 
clustering methods according to several criteria includ-
ing Silhouette. 

For clustering, by analogy with [Berngardt et al., 
2022], we will use 15-dimensional data consisting of 
parameters measured by radars (velocities, spectral 
widths, elevation angles, sounding frequencies, time, 
azimuth/beam number, frequency channel, etc.) and the 
results of simulation of signal propagation trajectory 
(angle relative to the geomagnetic field, angle relative to 
the horizon in different parts of the path, number of sig-
nal propagation hops). 

Frequency channels and beam numbers are categori-
cal variables that require the choice of a vector repre-
sentation, which is not obvious in this problem. In this 
work, unlike [Berngardt et al., 2022; Berngardt, 2022], 
clustering is used separately on each beam and on each 
of the two frequency channels, which eliminates the 
need to search for a vector representation, but signifi-
cantly increases the number of analyzable independent 
experiments. 

To test the applicability of the GM algorithm to this 
problem and determine the number of optimal clusters, 
the clustering problem has been solved in two ways. 
The first is the GM algorithm with determination of the 
number of clusters according to the Bayesian infor-
mation criterion (BIC), hereinafter referred to as 
GMBIC; it searches for clusters of mostly elliptical 
form. The second is clustering by the GMsDB algorithm 
[Berngardt, 2023], which takes GMBIC clusters and 
combines substantially overlapping elliptical clusters 
into larger complex clusters. The DBSCAN-GM clus-
tering method, which is similar to GMsDB, has been put 
forward, for example, in [Smiti et al., 2016], but with a 
slightly different principle of clustering. Comparing the 

number of clusters obtained by both algorithms 
(GMsDB and GMBIC) allows us to figure out how 
many elliptical clusters do not intersect each other, and 
if their number is large, indirectly prove that GMBIC 
may be applied to this problem. 

Figure 3 demonstrates distributions of the number of 
clusters found in radar data by the two methods: 
GMBIC and GMsDB algorithms with a statistical sig-
nificance level α=0.1 when clusters are combined 
[Berngardt, 2023]. Panels a1 and a2 show the depend-
ences of the number of clusters determined by the two 
algorithms. The proportionality is seen in the number of 
clusters, which indicates an approximately constant 
proportion of intersecting elliptical clusters. Panels b1 
and b2 illustrate the distribution of the number of 
GMBIC clusters combined by the GMsDB algorithm. 
We can see that more complex clusters, which are iden-
tified by the GMsDB algorithm, are composed of no 
more than 3–4 elliptical clusters. The low proportion of 
complex clusters suggests that clusters generally have a 
simple elliptical shape. Panels c1 and c2 exhibit distri-
butions of the proportion of isolated GMBIC clusters 
that have no close neighbors. It is apparent that, on av-
erage, 80–83 % of clusters determined by GMBIC are 
isolated. Their high proportion suggests that it is ac-
ceptable to apply GMBIC to initial clustering. This also 
explains the acceptable quality of approximation of co-
herent radar data clusters achieved by GM-based mod-
els [Berngardt et al., 2022; Berngardt, 2022]. Panels d1, 
d2 show distributions of the number of GMBIC clusters 
in the data; e1, e2, distributions of the number of 
GMsDB clusters in the data. It can be seen that the 
number of clusters is seen not to exceed 52, and there 
are, on average, more clusters in MAGW data than in 
EKB data. Panels f1 and f2 display proportions of data 
in isolated GMBIC clusters. It can be observed that a 
significant proportion of radar data (from 40 to 80 %) is 
in isolated elliptical clusters. Their high proportion also 
indicates that it is acceptable to use the GMBIC method 
for clustering. For the MAGW radar, the proportion of 
data in complex clusters exceeds the proportion of such 
data from the EKB radar. 

The GMsDB algorithm tends to combine intersect-
ing clusters into one [Berngardt, 2023], which affects 
the clustering quality in the case of intersecting clusters. 
Later on, therefore, the GMBIC clustering was utilized 
as reference; approximately 80 % of its clusters are iso-
lated and coincide with GMSDB clusters, and only 20 
% of clusters in the data are complex (non-elliptical) 
clusters (see panels c1, c2). This implies that with 
GMBIC we can correctly cluster from 50 to 80 % of all 
data into simple elliptical clusters, and divide complex 
clusters into several simple ones. 

 
STAGE 2. 
DATA CLASSIFICATION 

Building an optimal data classifier and its 
justification 

This stage is aimed mainly at finding the minimum 
fully connected classifier network that repeats clustering  
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Figure 3. Distribution of the number of clusters determined by the GMBIC and GMsDB algorithms in the EKB and MAGW 

radars: distribution of the number of clusters determined by the two algorithms (a1, a2); distribution of the number of GMBIC 
clusters combined by the GMsDB algorithm (b1, b2); distribution of the proportion of isolated GMBIC clusters (c1, c2); distribu-
tion of the number of GMBIC clusters in the data (d1, d2); distribution of the number of GMsDB clusters in the data (e1, e2); 
proportion of data in isolated GMBIC clusters (f1, f2) 

 
with high accuracy. The minimum network is important 
to facilitate the interpretation of its results from a physi-
cal standpoint: the number of neurons at the output of 
the classifier network corresponds to the minimum 
number of independent signal types in observable data. 
Let us build a fully connected network consisting of a 
small number of layers (two layers) with the minimum 
possible number of neurons in each layer. 

To build the network, two datasets have been created: 
full and shortened. The shortened dataset was used to ob-
tain a good initial approximation for all coefficients of the 
neural network and to determine its hyperparameters — 
the minimum number of neurons in each layer. The full 
dataset was employed for the final solution of the problem 
and the final network training. 

The full dataset was created from ~15000 experiments 
totaling ~42 million records: (20 million records from the 
EKB radar and 22 million records from the MAGW radar) 
and was split at a ratio 4:1 into training and test parts. 

The shortened dataset was formed from 1000 exper-
iments (~2.8 million records) randomly selected from 
the full dataset, and split into training and test parts at 
the ratio 4:1. The validation parts of the dataset were 
missing in both cases since cross-validation of the train-
ing dataset (in three folds) was applied to training, and 
three versions of the model were always trained, which 
was necessary for subsequent analysis. 

Justification of the classifier network archi-
tecture 

The architecture of neural networks (wrap and clas-
sifier) is depicted in Figure 1, b, c. Here, K is the maxi-
mum number of clusters after stage 1; M is the number 
of hidden (latent) classes in the data; N is the dimension 
of the hidden layer of the classifier. The network is a 
significant simplification of the version proposed in 
[Berngardt et al., 2022; Berngardt, 2022], but provides a 
better prediction quality. 
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The choice of the architecture of the new classifier 
network (see Figure 1, c) is based on three principles: a 
wide two-layer network suffices to approximate contin-
uous functions [Kolmogorov, 1957; Arnold, 1963]; as 
activation functions of the neural network, it is desirable 
to use absolute values to maintain the relation with algo-
rithms that have proven themselves well before 
[Ponomarenko et al., 2007]; as a conversion of network 
outputs to probabilities, instead of the Softmax function, 
we can normalize nonnegative quantities to their sum. 

Let us validate the choice of the absolute value acti-
vation function. The model proposed in this paper has 
been developed from standard approaches to signal sep-
aration at coherent scatter radars. The well-known and 
widely used condition at SuperDARN radars for sepa-
rating signals into two types (ground scatter and scatter-
ing from ionospheric irregularities) according to their 
spectral characteristics has the form [Ponomarenko et 
al., 2007] 

0,A V B W C+ + >  (5) 
where A, B, C are some constants; V, W are the meas-
ured Doppler shift of a signal and its spectral width. We 
can assume that in the case of other classes the bounda-
ries can also be described by a superposition of module 
functions, so it is advantageous to utilize the absolute 
value function as an activation function. 

Let us justify the use of the linear normalization lay-
er. The Softmax function is traditionally used at the out-
put of most classifiers, which allows us to normalize 
neural network outputs so that the values are nonnega-
tive and their sum is 1. However, it is often necessary to 
perform additional calibration of the obtained values 
[Guo et al., 2017] or modify the Softmax function [Sut-
ton et al., 2018]. Therefore, the choice of the activation 
function at the classifier output is arbitrary. In this pa-
per, we will utilize the linear normalization layer as 
activation at the classifier network output: 

( ) .i
i

jj

xLinearNormalization x
x

=
∑



 (6) 

When the condition 0ix i≥ ∀  holds (it holds automati-
cally due to the use of absolute activation in the previ-
ous layer, see Figure 1, c), the output values of the lay-
er, as with Softmax, satisfy Kolmogorov's axiomatics in 
the probability theory [Kolmogoroff, 1933]: they are 
nonnegative, their sum is 1, and the probability of sev-
eral mutually exclusive events is the sum of their proba-
bilities. Therefore, the outputs of such a layer can be 
interpreted as probabilities of the corresponding classes, 
and this does not require changing the standard loss 
functions during network training (cross-entropy). 

Unlike the previously developed network [Berngardt et 
al., 2022; Berngardt, 2022], the use of physically adequate 
(absolute value) activation functions allowed us to solve 
the problem: 

• with fewer input parameters: the new classifier 
model does not require knowledge of the effective scat-
tering height; 

• without methods of increasing data dimension: the 
classifier does not preliminarily increase data dimension 
with Polynomial Features; 

• significantly reducing the network depth from six 
to two fully connected layers. 

At the input of the classifier (see Figure 1, c), there is 
a batch normalization layer [Ioffe, Szegedy, 2015], which 
is an adaptive linear scaling of inputs and is employed to 
speed up the search for optimal network coefficients. If 
necessary, its coefficients can be added into the coeffi-
cients of the first network layer. Subsequent analysis has 
shown that the constructed neural network provides much 
higher cluster prediction quality than models [Berngardt 
et al., 2022; Berngardt, 2022]. 

Determining the number of signal classes 
for classification 

The proposed model reduces the problem of signal 
classification to analyzing encoder outputs (see Figure 1, a, 
c) as to the probability that the data belongs to one of sev-
eral classes. In constructing an interpretable network, it is 
important to choose the optimal number of neurons in this 
layer (and the other layers of the neural network) with 
fixed activation functions. 

The initial wide network for the classifier was a 
network of widths N=300, M=140 in the first and sec-
ond layers respectively. This can be justified as follows: 
the number of found clusters in the radar data does not 
exceed 52 (see Figure 3, d1, d2), this is the maximum 
expected number of hidden classes M in the data and the 
minimum number of neurons in the output layer of the 
classifier. According to [Berngardt, 2024]), it is advisa-
ble to choose an initial number of neurons at least twice 
the expected minimum number of neurons. The number 
of neurons in the last layer has therefore been chosen to 
be about three times the maximum number of clusters; 
and the number of neurons in the first layer, about 6 
times. As it turned out, this architecture is sufficient to 
search for the minimum number of neurons, and such a 
neural network can be trained for a reasonable amount 
of time on an ordinary personal computer. To speed up 
the search for the minimum number of neurons, the 
network was trained at the reduced dataset (1000 exper-
iments) described above. Cross-validation according to 
the algorithm [Berngardt, 2024] was carried out at three 
folds. As a result, three versions of the model were 
trained. 

According to the algorithm [Berngardt, 2024], find-
ing the minimum number of neurons when evaluating 
the quality of the network requires quality metrics Q 
that satisfy the condition: 
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where X1, X2 are disjoint datasets, and Dim(X) is the 
number of elements (samples) in X. The Accuracy met-
ric has therefore been taken as a basic metric when 
searching for the minimum number of neurons. 

The number of independent classes was estimated by 
two methods. The first method provides an upper bound 
on the minimum sufficient number of classes in the data. 
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Using the dataset (filtered by the elevation angles and 
augmented), clustering of each experiment was per-
formed using GMBIC, a neural network (300×140 neu-
rons) was trained, the minimum number of neurons in 
layers was determined (49 and 35 respectively, Figure 4, 
a1), the minimum network (49×35 neurons) was trained. 
In this case, a sample was assumed to belong to a given 
class if all three trained classifiers predicted the same 
class for it (the ensemble voting classification method). 
The number of samples in the ranked series of classes is 
shown in Figure 4, b1. From the observed inflection point 
(a sharp decrease in the number of observations of sam-
ples in the class) we can estimate the number of frequent-
ly observable classes. It is 27 for the EKB radar and 28 
for the MAGW radar (vertical dash-dotted lines in Figure 
4, b1). Note that reducing the number of classes to <35 
(and re-training the classifier with a new number of clas-
ses) does not make the inflection position stable: for ex-
ample, when choosing the number of hidden classes 
equal to 31, it becomes 23 and 24 for the EKB and 

MAGW radars respectively (see Figure 4, c1, vertical 
dash-dotted lines). Therefore, decreasing the number of 
classes to <35 is probably unjustified. Using this method 
corresponds to the fact that all the clusters we found have 
a shape close to elliptical, but can significantly intersect. 
Obviously, if real clusters have a more complex shape, 
this method can overestimate the number of independent 
classes. Therefore, such an estimate is in line with the 
upper bound on the number of classes. 

The second method gives a lower bound on the 
minimum sufficient number of classes. For the original 
dataset (filtered by elevation angles and augmented), 
clustering was performed by GMsDB, a wide neural 
network was trained as by the first method (300×140), 
and the minimum number of neurons per layer was 
determined (36 and 23 respectively, Figure 4, a2). 
After that, the final network with a minimum number of 
 

 
Figure 4. Estimated minimum number of neurons in the network and distribution of classes by the number of elements: on 

the left is the GMBIC clusterer; on the right, the GMsDB clusterer; a1, a2 — the dependence of the minimum number of neurons 
in classifier layers (first hidden, second hidden, and output normalization ones) on the dataset amount used for the search; b1, b2 
— the number of samples in a class as a function of the rank of this class for an optimal network (35 classes and 23 classes re-
spectively); c1 is the number of samples in a class as a function of the rank of this class for an inoptimal network (31 classes). 
Vertical lines of respective colors in b1, b2, c1 indicate the boundary between frequently and rarely occurring classes in corre-
sponding radars. 
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neurons (36×23) was trained using the dataset clus-
tered by GMBIC. This corresponds to the finding of 
the minimum possible number of disjoint classes. It 
should be noted that the number of classes confidently 
defined as the inflection position in the plot in Figure 
4, b2 is only by 1–2 smaller than this value: 21 classes 
for EKB and 22 for MAGW, which indicates the sta-
bility of this separation. Application of this method 
suggests that the found clusters can have a complex 
shape and do not intersect. Obviously, if the clusters 
that actually exist in the data intersect with each other 
(signal types are poorly distinguishable), this method 
underestimates the number of independent classes. 
Therefore, such an estimate is in line with the lower 
bound on the number of classes. Note that such a lower 
bound on the number of classes is close to the number of 
clusters and hidden classes used empirically in [Berngardt 
et al., 2022; Berngardt, 2022] (20 classes). 

Thus, the expected number of classes in the data ranges 
from 23 to 35, and an error in classification based on the 
upper bound (35 classes) can lead to separation of complex 
classes into several parts, and an error in classification 
based on the lower bound (23 classes) can result in joining 
of several different, but similar classes into one. Obviously, 
the former is preferable, and therefore we will use it in the 
future. 

To increase accuracy and generality, the model was 
retrained on the entire training dataset (more than 15000 
experiments, or ~25 million different samples). The 
model is trained in three versions, using three-fold 
cross-validation; splitting into folds is random. 

The final algorithm for finding the optimal 
classifier 

The final algorithm for finding the optimal classifier 
consists of the following stages. 

1. Extracting a data part that fits elevation angles be-
low the threshold one [Milan et al., 1997] (28° for the 
EKB radar and 38° for the MAGW radar) corresponding 
to the signals coming from the main lobe of antenna 
pattern. 

2. Calculation of trajectory parameters of radio wave 
propagation, trajectory shape, angle with the magnetic 
field, and scattering height from radar data, and their 
aided expansion of the set of parameters measured by 
radars. 

3. Augmentation of the calculated spectral width of 
received signal for experiments conducted with long 
pulse sequences (16-pulse) according to (3), (4). 

4. Clustering of each experiment (experiments differ 
in dates, azimuths, and frequency channels) by GMBIC 
in the previously described 15-dimensional parameter 
space. 

5. Selection of a small dataset (1000 experiments) 
from experiments used for stages 6–7. 

6. Training of a sufficiently wide neural network (see 
architecture in Figure 1, c) on 9 physical parameters, using 
a network with 300 hidden neurons in the first hidden layer 
and 140 neurons (latent classes) in the second. 

7. Determination of the minimum number of neurons 

in layers of the resulting network by the algorithm 
[Berngardt, 2024] with Accuracy as a metric. 

8. In all available experiments, the neural network is 
trained (see architecture in Figure 1, a–c) with the opti-
mum number of neurons found for the classifier net-
work. 

At stages 1–3, we prepare the data; at stages 4–7, for a 
small part of the dataset, we determine the number of hid-
den classes in the data and the optimal number of neurons 
in the network; at stage 8, we train the final optimal classi-
fier at the entire available dataset. 

The proposed algorithm automatically determines 
the number of classes in the data, is fully data-driven, 
and does not require an expert at any stage. The algo-
rithm is self-consistent and self-learning: it finds all 
algorithm parameters automatically, except for the list 
of parameters, used for clustering and classification, and 
the general network architecture, the reasons for which 
have been outlined above. 

The resulting neural network has 49 neurons in the first 
layer and 35 neurons in the second, which means there are 
35 different classes in the data. The model achieves a clus-
tering repetition quality of 0.92 according to the AUC-PR 
metric and significantly exceeds the previous networks' 
quality of 0.68 [Berngardt, 2022; Berngardt et al., 2022]. 

The resulting neural classifier network (see Figure 1, 
c) provides a minimum number of neural network pa-
rameters with high quality of its operation, which sub-
sequently simplifies its interpretation. On the other 
hand, this number of neurons can be interpreted as the 
optimum number of radiophysically distinguishable 
classes in EKB and MAGW radar data. 

The final model (see Figure 1, c) for determining 
signal class from its parameters has an analytical form 
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where Aij, Bj, Ck j , Dk are the coefficients that are 
searched for as a result of network training; xi denotes 
input parameters; kdetected is the number of hidden class 
to which the measured signal with parameters xi will 
belong. The number of model parameters can be easily 
calculated from the above formula and is equal to 2240. 
The model can be easily implemented for fast calcula-
tions and without frameworks of neural networks. The 
obtained formula for optimal signal classification is 
structurally close to the results of the Kolmogorov—
Arnold theorem [Kolmogorov, 1957; Arnold, 1963]. Its 
structural relationship is also seen with the standard 
algorithm for separating signals, scattered from the iono-
sphere and Earth's surface [Ponomarenko et al., 2007], 
given in (5) and traditionally used at SuperDARN radars. 

 
DISCUSSION 

Interpretation of the resulting classes 

Cross-validation is used in model training and re-
search, which makes it possible to employ three net-
work variants to construct an ensemble model. As the 
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analysis of the data for 2021 showed, the classes defined 
by three versions of the model coincide with a high de-
gree of quality: the adjusted Rand index [Hubert, Ara-
bie, 1985] in pairs between the results of the three mod-
els lies in the range 0.936–0.967 for the EKB radar and 
0.897–0.937 for the MAGW radar, which indicates a 
close similarity between the classifications obtained by 
these models and allows us to apply any of the models 
separately or three models together (ensemble) to inter-
pretation. 

With the ensemble use of the three models, it is con-
venient to employ a voting mechanism and decide on 
the signal class when predictions of all models match. If 
network predictions do not match, the result is placed in 
a separate class (data that cannot be unambiguously 
interpreted). 

The statistics of parameters of various classes (95 % 
confidential interval) determined by such an ensemble 
method in 2021 is presented in Figure 5 separately for 
EKB and MAGW radars. The classes are divided into three 
groups, highlighted in color: ground scatter, ionospheric 
scatter, and signals that are difficult to interpret. 

The last class included signals with incredibly high ve-
locities or spectral widths (>1000 m/s). Signals with a low 
average scattering height (<100 km) were interpreted as 
ground scatter; the remaining part of the classes, as iono-
spheric scatter of different types. 

Figure 5 presents the statistics of scattering heights 
(Hiri), the number of propagation hops (Mode), the ra-
dar range (Range), the Doppler velocity Vd, the spectral 
width Wl, the cosine of the angle of the radio wave tra-
jectory with the geomagnetic field cos(k, B), the eleva-
tion angle of the trajectory with the horizon at the scat-
tering point sin(k, xy), and the number of observations 
of this class (# of cases). 

The need to use a large number of classes for signals 
scattered from the ionosphere in automatic data classifi-
cation has already been suggested and justified [Burrell et 
al., 2015]. Multiple types of ground scatter signals have 
already been proposed and substantiated, for example, in 
[Kunduri et al., 2022]. Due to the complexity and dynam-
ics of the processes occurring in the ionosphere, it is ex-
pected that the number of types of signals scattered from 
the ionosphere will exceed the number of types of signals 
scattered from the Earth surface. 

Three of the found classes have a negligible amount 
of data (class 1, 22, 27). 

Analysis of the behavior of the main signal features 
shown in Figure 5 allows us to pre-interpret the classes 
as follows. 

Scattering of ionospheric types 

It includes 13 classes: 0, 2, 3, 5–7, 10, 11, 19–21, 
27, 32. The total proportion of such signals (from the 
main lobe of the antenna pattern) is 56 % for EKB and 
48 % for MAGW. They can be interpreted as follows 
(see Figure 5). 

1. Class 0 is 1.5th or 2.5th hop aspect scattering 
in the E/F layer. Heights 100–200 km, the 2nd hop, 
distances 1500–3000 km, high mostly positive veloci-
ties up to 800 m/s, high spectral widths up to 600 m/s, 

proximity to orthogonality to the magnetic field 
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2. Class 2 is 0.5th hop aspect scattering in the F 

layer. Heights 300–450 km, the 1st hop, distances 800–
2500 km, high velocities up to 250 m/s, high spectral 
widths up to 250 m/s, proximity to orthogonality to the 
magnetic field, scattering in the ascending branch of the 
trajectory. 

3. Class 3 is 1.0st hop non-aspect scattering in the E/F 
layer or magnetically oriented quasi-bistatic scattering 
[Kravtsov, Namazov, 1980; Berngardt et al., 2016], when 
trajectories of incident and scattered waves differ signifi-
cantly. Heights 80–200 km, the 1st hop, distances 1000–
2500 km, high velocities up to 300 m/s, average spectral 
widths up to 200 m/s, lack of orthogonality to the magnetic 
field, scattering in the descending part of the trajectory. 

4. Class 5 is 1.5th hop aspect scattering in the E/F 
layer. Heights 50–200 km, the 2nd hop, distances 1500–
3000 km, high mostly negative velocities up to 500 m/s, 
high spectral widths up to 800 m/s, pronounced orthog-
onality to the magnetic field, scattering mainly in the 
horizontal or ascending part of the trajectory. 

5. Class 6 is 0.5th hop aspect scattering in the E 
layer. Heights 100–200 km, the 1st hop, distances 350–
700 km, low velocities, spectral widths up to 200 m/s, 
pronounced orthogonality to the magnetic field, scatter-
ing mainly in the horizontal or ascending part of the 
trajectory. 

6. Class 7 is presumably Pedersen ray scattering 
[Ponomarenko et al., 2011] or magnetically oriented quasi-
bistatic scattering [Kravtsov, Namazov, 1980; Berngardt et 
al., 2016]. Heights 200–250 km, the 1st hop, distances 
1000–1500 km, low velocities up to 100 m/s, positive for 
EKB, negative for MAGW, average spectral widths up to 
250 m/s, lack of orthogonality to the magnetic field, scat-
tering mainly in the horizontal or descending part of the 
trajectory. 

7. Class 10 is 0.5th hop scatter by Pedersen ray 
[Ponomarenko et al., 2011] or in the E/F layer. Heights 
100–300 km, the 1st hop, distances 500–1500 km, low 
velocities, average spectral widths up to 250 m/s, weak 
orthogonality to the magnetic field, scattering near the 
horizontal part of the trajectory. 

8. Class 11 is 0.5th hop ionospheric scatter in the E/F 
layer. Heights 170–300 km, the 1st hop, distances 500–
1000 km, low velocities, average spectral widths up to 200 
m/s, weak orthogonality to the magnetic field, scattering in 
the horizontal or ascending part of the trajectory. 

9. Class 19 is 0.5th hop scattering in the E/F layer. 
Heights 70–300 km, the 1st hop, distances 600–2000 
km, average velocities up to 200 m/s, average spectral 
widths up to 250 m/s, weak orthogonality to the magnet-
ic field, scattering mainly in the horizontal part of the 
trajectory. 

10. Class 20 is a possible analog of near-range 
echo (scattering at E-layer heights at short radar ranges 
<300 km [Ponomarenko et al., 2016]), but for F-layer 
heights (hereinafter F-layer near-range echo). Heights 
150–300 km, the 1st hop, distances 250–700 km, average 
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Figure 5. Parameters of various classes for the EKB and MAGW radars according to statistics on 2021 (95 % confidential in-

terval) obtained by the ensemble estimation method. Red color indicates presumably noise classes; green, ionospheric scatter; 
orange, ground scatter. In the last column (unk) are signals interpreted in various ways by different network versions; a1, a2 — 
scattering height; b1, b2 — number of reflections from the underlying layer or the Earth surface; c1, c2 — radar range; d1, d2 — 
Doppler velocity; e1, e2 — spectral width; f1, f2 — the cosine of the angle with the magnetic field at the scattering point; g1, g2 
— the sine of the elevation angle at the scattering point; h1, h2 — the number of signal observations 

 
velocities up to 200 m/s, high spectral widths up to 300 
m/s, weak orthogonality to the magnetic field, scattering 
in the ascending part of the trajectory. 

11. Class 21 is meteor echo [Chisham, Freeman, 
2013; Berngardt, 2022] and near-range echo [Ponoma-
renko et al., 2016]. Heights 60–100 km, the 1st hop, 
distances 220–400 km, low velocities up to 100 m/s, 
average spectral widths up to 200 m/s, weak orthogonal-
ity to the magnetic field, scattering in the ascending part 
of the trajectory. 

12. Class 27 is 1st hop scattering in the E layer, 
heights 30–80 km, the 1st hop, distances 2000 km, high 
velocity (~–400 m/s), high spectral widths up to 500 m/s, 
orthogonality to the magnetic field is not pronounced, 
scattering in the descending part of the trajectory. 

13. Class 32 is possible 1.5–2.5th hop F-scattering. 
Heights 200–450 km, 1–3 hops, distances 2000–4500 
km, high velocities up to 800 m/s, high spectral widths up 

to 300 m/s, orthogonality to the magnetic field is not pro-
nounced, scattering in the ascending part of the trajectory. 

Ground scatter 

It includes 6 classes: 4, 16, 17, 24, 28, 30. The total 
proportion of such signals (from the main lobe of the 
antenna pattern) is 31 % for EKB and 37 % for MAGW. 
They can be interpreted as follows. 

1. Class 4 is 1st hop ground scatter. Heights below 100 
km, the 2nd hop, distances 900–1500 km, low velocities, 
average spectral widths up to 200 m/s, lack of orthogonali-
ty to the magnetic field, scattering in the ascending branch 
of the trajectory. 

2. Class 16 is scattering with high spectral widths 
and velocities, possibly 1st hop ground scatter with 
strong refraction by short-living ionospheric irregulari-
ties. Heights 0–100 km, 1–2 hops, distances 180–3000 
km, average velocities up to 200 m/s, high spectral widths 
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up to 400 m/s, weak orthogonality to the magnetic field, 
scattering in the horizontal part of the trajectory. 

3. Class 17 is 2nd hop ground scatter or 1.5th hop E-
scattering. Heights 0–100 km, the 2nd hop, distances 
1000–2500 km, low velocities, average spectral widths 
up to 200 m/s, weak orthogonality to the magnetic field, 
scattering in the ascending part of the trajectory. 

4. Class 24 is 1st hop ground scatter. Heights 0–70 
km, the 1st hop, distances 700–2000 km, low velocities, 
average spectral widths up to 200 m/s, orthogonality to 
the magnetic field is not pronounced, scattering in the 
descending part of the trajectory. 

5. Class 28 is 1st hop ground scatter, height 20–150 
km, the 1st hop, range 800–1500 km, low velocities, 
average spectral widths up to 200 m/s, lack of orthogo-
nality to the magnetic field, scattering in the descending 
part of the trajectory. 

6. Class 30 is 1st hop ground scatter, the 1st hop, 
heights 40–150 km, range 600–1200 km, low velocities, 
average spectral widths up to 200 m/s, lack of orthogo-
nality to the magnetic field, scattering in the descending 
part of the trajectory. 

Proportion of signals in the remaining (uninterpret-
ed) classes is low, 4 % for the EKB radar and 5 % for 
the MAGW radar. The proportion of signals detected 
differently by various models is ~10 % in each of the 
radars. Thus, the proposed method allows us to automat-
ically classify ~85 % of all data received in the main 
lobe of the antenna pattern. 

Range-time dynamics of different classes 

Figures 6, 7 illustrate diurnal variations in signals of 
different classes according to ISTP SB RAS EKB and 
MAGW radar data for 2021, using a test dataset that did 
not participate in training. The advantage of this data 
representation is that neither range nor time are directly 
involved in the data classification, and the appearance of 
grouped areas of points in these coordinates serves as a 
subjective confirmation of the good quality of the classi-
fication. The plots obtained make it possible in some cas-
es to confirm the above interpretation of these classes. 

An additional confirmation of the correctness of the 
classification is the height distribution of signals of sever-
al classes (Figure 8): meteor echo/near-range echo (scat-
tering by the E layer at close distances), F-layer near-
range echo (scattering by the F layer at close distances), 
other ionospheric signals and ground scatter signals. It 
can be seen that the height distribution of meteors deter-
mined by the algorithm is well matched to what is ex-
pected with a maximum at ~80–100 km [Chisham, Free-
man, 2013], the F-layer near-range echo distribution cor-
responds to heights of ~180 km, ground scatter signals 
are concentrated at 0–100 km, and ionospheric scatter of 
other types has a maximum distribution at 180–200 km. 
The height distributions of signals of different types for 
the EKB and MAGW radars are similar. 

Degree of importance of various input pa-
rameters of the model 

One of the urgent issues in identifying the types of scat-
tered signals is the choice of necessary parameters [Burrell 
et al., 2015; Ponomarenko, McWilliams, 2023]. Within 

the data-driven approach, we can formulate this problem 
in terms of the feature importance: which parameters 
most strongly affect the quality of detection of each 
specific class by the model we have built. A similar 
approach has been adopted in [Kong et al., 2024]. In 
machine learning, there are a large number of different 
methods for such estimate [Huang et al., 2020]. One of 
the universal methods to do this is the permutation fea-
ture importance [Breiman, 2001], in which the im-
portance of an input parameter for prediction is estimat-
ed from the change in prediction quality when values of 
this parameter are randomly permutated in the dataset. 

Since it is desirable not only to arrange the input pa-
rameters in order of importance, but also to find the opti-
mal combination of such parameters for classification, it is 
advisable to use greedy modifications of the algorithm (the 
modification adopted in this work is given in Appendix 1). 

Figure 9 shows the degree of importance of various 
input parameters for determining different classes 
(ΔQlopt), a higher value corresponds to a more important 
feature. The degree of importance for the total classifi-
cation is also given (column “total”). The results are 
presented for each network variant obtained in cross-
validation. The cells for which the value is missing rep-
resent insignificant parameters. 

Important for the classification is most often seen to 
be the height at which the signal is scattered, elevation 
of the radio wave propagation trajectory at the scattering 
point, as well as approximately equally the angle with 
the geomagnetic field at the scattering point and the 
elevation angle in the middle of the signal propagation 
path. The least important parameters are the signal 
propagation mode and the spectral width of the received 
signal. This is consistent with qualitative expectations: 
knowing the scattering height and the propagation tra-
jectory of signals really makes it easy to distinguish 
between their different types. For ground scatter, the 
scattering height should be ~0; for meteor echoes, ~90 
km; for ionospheric scatter, from 100 to 400 km. Eleva-
tion of the trajectory and the angle with the magnetic 
field will allow us to distinguish ordinary scattering 
from the aspect one characteristic of plasma instabilities 
of the ionospheric E and F layers. 

Thus, the radio propagation trajectory shape and the 
scattering height are the most important for classification 
of scattered signals. These parameters cannot be measured 
directly by a radar and require simulation of radio wave 
propagation. To determine them, we should know the 
sounding frequency, the three-dimensional antenna pattern, 
the measured elevation angle and azimuth of the incoming 
radio wave, as well as the three-dimensional structure of 
the refractive index of the ionosphere. Obviously, in com-
plex situations when the propagation trajectory is difficult 
to predict (there are no reliable measurements of the eleva-
tion angle of the incoming radio wave or there is no suffi-
ciently accurate model of the ionosphere), this method will 
give significant errors, which explains the extensive usage 
of simpler methods based on measuring velocity and spec-
tral width [Ponomarenko et al., 2007; Blanchard et al. al., 
2009] at high-latitude radars. As the work shows, the 
method we have developed can be applied to calibrated 
mid-latitude radars using IRI model. 
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Figure 6. Range-time distributions of signals at the EKB radar: the result of the distribution of data by class at the test dataset 

by voting at the ensemble of three networks. Indefinite data is excluded. Colors indicate different signal types as in Figure 5 

 
Figure 7. Range-time distributions of signals in the MAGW radar: the result of the distribution of data by class at the test da-

taset by voting at an ensemble of three networks. Indefinite data is excluded. Colors indicate different signal types as in Figure 5 
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Figure 8. Distribution of scattering of various types by heights obtained through ray tracing, using radar data and IRI at EKB 

(a) and MAGW (b) for 2021. Distributions of meteors/near-range echo (class 21), F-layer near-range echo (scattering by F layer 
at close ranges) (class 20), ionospheric scatter of other types (classes 0, 2, 3, 5–7, 10, 11, 19, 27, 32), and ground scatter (classes 
4, 16, 17, 24, 28, 30) 

 
Figure 9. The degree of importance of various parameters for determining classes by three different network variants ob-

tained from cross-validation training, as well as the total degree of importance of each parameter for the classification result (col-
umn “total”) 

 
Testing the algorithm based on observations 

in 2023 

To test the model's performance, the data that had 
not previously been employed in training and under 
different geophysical conditions was processed using 
MAGW data for the first half of 2023. 

The processing results (range-time distributions of sig-
nals of different classes and distributions of different clas-
ses by characteristics) are presented in Figures 10, 11. 
There is a good qualitative agreement with the results of 
processing of initial (training) data for 2021 (see Figures 6, 
7). IRI-2020 was used to simulate radio wave propagation 
[Bilitza et al., 2022]. 

The main feature of the 2023 data is a significant 
difference in the level of ionospheric disturbance. 
According to the Royal Observatory of Belgium, in 

2021 the annual average number of sunspots was 30, 
while for the first half of 2023 it was 129. This leads 
both to more active scattering of various ionospheric 
types and to degradation of accuracy of prediction of 
radio wave propagation by IRI under disturbed condi-
tions (the error in trajectory calculations usually in-
creases with increasing range). Another feature of the 
data is likely to be a less accurate calibration of the ra-
dar by the elevation angle (see, e.g., the change in mete-
or distribution in Figure 11, b). 

Note that the proportion of ground scatter signals 
decreased to 24 % compared to 2021, the proportion of 
signals scattered by the ionosphere increased to 51 %, 
the proportion of uninterpreted signals doubled to 10 %, 
and the proportion of signals differently determined by 
different networks increased 1.5 times, to 15 %. Thus, 
in the first half of 2023, the algorithm made it possible 
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Figure 10. Results of the MAGW radar data classification for January–May 2023: range-time distribution of observations of 

each class. Colors indicate different signal types as in Figure 5 
 

to automatically interpret 75 % of all signals, which is 
10 % less than in 2021. 

Figure 10 shows advantages and limitations of the pro-
posed method. The advantages include the qualitative 
agreement of range-time distributions of signals of various 
classes with the data for 2021, which suggests that the 
method can be applied to new data. 

Among limitations is the observable degradation of ac-
curacy of determining the classification quality at ranges 
above 2000 km. The most significant is class 20 (F-layer 
near-range echo) in Figures 6, 7, 10. Comparing the Fig-
ures indicates that in 2023 the method more often makes 
mistakes at ranges above 2000 km, where a significant 
error in trajectory calculations is expected to accumulate. A 
similar effect is observed in some other classes: ionospher-
ic scatter (classes 10, 11) and meteor/near-range echo 
(class 21). An indirect sign of a decrease in the quality of 
calculations is also changes in the mode composition of 
signals (see Figures 5, 11): almost all classes began to in-
clude higher modes than in 2021, which indicates difficul-
ties in trajectory calculations, and may also be due to an 
increase in the level of background ionospheric disturbance 
in 2023 as compared to 2021. High velocities in ground 
scatter classes also indicate an increase in the ionospheric 
disturbance level and the accompanying large-scale wave 
activity in the background ionosphere. 

The limitations of the model include the inability to 
separate very close classes, for example, the E-layer 
near-range echo and meteor echo, combined by this 
model into one class (class 21). This limitation is caused 

by two of its features: locality (it ignores the temporal 
behavior of irregularities over long lifetimes since it 
uses the equivalent standard spectral resolution of the 7-
pulse sequence limiting lifetimes to ~50 ms), and the 
accuracy of height determination (parameters of these 
irregularities cannot be separated with required accuracy 
due to insufficient accuracy in determining the elevation 
angle). 

Seasonal and diurnal features of observations 
of various classes 

Seasonal and diurnal features of observation of var-
ious classes of signals during 2021 are shown in Fig-
ure 12. 

Panels a–d plot the daily dependence of the occurrence 
of various classes (demonstrated in local solar time at the 
calculated scattering point) and the seasonal dependences 
of observation of various classes of signals. We can see 
that most EKB radar signals are observed during the day; 
at the MAGW radar, the diurnal effect in signals is less 
pronounced. The seasonal dependence is more pronounced 
at MAGW and less pronounced at EKB. A similar effect 
may be due to the fact that MAGW is located more to the 
pole than EKB. Therefore, the illumination for the MAGW 
radar has a more pronounced seasonal dynamics, and iono-
spheric dynamics is controlled by the magnetosphere to a 
greater extent than in EKB. 

Panels e and f present the statistics on 2nd and 1st 
hop ground scatter (classes 17 and 24). As expected, 
this scattering is observed mainly during the daytime when 
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Figure 11. Results of the MAGW radar data classification 

for January–May 2023: 95 % interval of changes in the main 
parameters in each class, colors and types of parameters are 
similar to those in Figure 5 (a); height distribution of signals of 
various types; signal types are similar to those in Figure 8 (b) 

the electron density in the ionosphere is high enough 
to reflect the radio signal from the ionosphere, and in 
summer signals are shielded by the near-range echo of 
the E and F layers. 

Panel g displays the F-layer near-range echo (class 
20) most intense in summer, which is one of the causes 
for the shielding of ground scatter signals. It is apparent 
that at the MAGW radar this type of scattering can also 
be observed in the solar terminator region. 

Panel h shows a mixed class of signals — meteor 
echo/near-range echo (class 21), which is difficult to sepa-
rate by scattering characteristics — close heights and low 
velocities [Ponomarenko et al., 2016]. Signals of this class 
are demonstrated to be most often observed at night 
(meteor observations) and in summer (near-range echo 
observations). 

Panel i exhibits possible scattering by Pedersen ray 
(class 10) [Ponomarenko et al., 2011]. This type of scatter-
ing is most often observed in winter during the daytime. 

Panel j presents a possible candidate for quasi-
bistatic scattering by magnetically oriented irregularities 
(class 7), the possibility of which was predicted in 
[Kravtsov, Namazov, 1980; Berngardt et al., 2016] and 
is related to the fact that signal paths in forward and 
reverse directions may not coincide; therefore, the con-
dition of orthogonality of scattering to the geomagnetic 

field for the trajectory of the received scattered radio 
wave is not met [Berngardt et al., 2016]. 

Panels k, l give two examples of ionospheric scatter: 
0.5 hop aspect scattering in the F layer (class 2), and 0.5 
hop scattering in the E/F layer with weak aspect sensi-
tivity (class 19). Scattering of these types is seen to be 
generally observed during the unlit time periods, which 
qualitatively corresponds to empirical patterns. 

Panels e–l indicate that many irregularities intensify 
near the solar terminator, which is associated with its 
high spatio-temporal dynamics. Figure 12 also shows 
that scattered signals of many types can be divided into 
mainly daytime (mostly ground scatter) and mainly 
nighttime (mostly scattering by ionospheric irregulari-
ties). 

 
CONCLUSION 

The paper has attempted to solve the problem of au-
tomatic classification of coherent scatter radar data by 
minimizing the influence of subjective human opinion 
on preparation and interpretation of data, as well as to 
analyze the resulting solution. 

Within the self-consistent data-driven approach, we 
have developed a method for automatically constructing 
such a classifier. This method allowed us to construct, 
train, and study compact mathematical model (8)–(9), 
which makes it possible to automatically classify EKB 
and MAGW radar data by using radiophysical features 
of their propagation and scattering. The number of free 
model parameters is 2240, and the number of found 
signal classes is 35. The work is a generalization, im-
provement, and mathematically more rigorous devel-
opment of the approach outlined in previous papers 
[Berngardt et al., 2022; Berngardt, 2022]. 

The following results have been obtained. 
An empirical model has been developed for aug-

menting the results of sounding with 16-pulse sequence 
up to 7-pulse sequence results (3)–(4). Such an augmen-
tation is necessary to train a single classifying model 
independent of the type of sounding signal in use. 

We have created and trained a neural network (clas-
sifier), using absolute value activation functions [Val-
lés-Pérez et al., 2023] and an output layer of linear nor-
malization (see Figure 1, c). The method of searching 
for the minimum number of neurons in a fully connect-
ed layer of the neural network [Berngardt, 2024] al-
lowed us to find the minimum number of neurons in this 
network: 49 and 35 neurons in the first and second lay-
ers respectively. The number of neurons in the second 
layer corresponds to the number of hidden signal classes 
in the data. The trained neural network provides a high 
quality of repetition of the results of the clustering in 
use (0.92 from the AUC-PR metric), significantly ex-
ceeding the previous model's quality metric of 0.68 
[Berngardt et al., 2022; Berngardt, 2022]. The resulting 
network is much smaller than the previous version 
[Berngardt et al., 2022; Berngardt, 2022] and has 2240 
parameters. 

By comparing the results of network training for two 
clusterings (Gaussian mixture+BIC criterion for esti-
mating the number of clusters (GMBIC) and GMsDB)  
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Figure 12. Time dependence of the occurrence of various classes, demonstrated in the local solar time at the calculated 

scattering point (a, b); seasonal dependence of the occurrence of various classes (c, d); seasonal-time dependences of observa-
tions of various classes: e, f — 2nd and 1st hop ground scatter (classes 17 and 24); g — F-layer near-range echo (class 20); h 
— meteor echo/near-range echo (class 21); i — Pedersen ray scattering (class 10); j — quasi-bistatic scattering (class 7); k — 
0.5 hop aspect scattering in the F layer (class 2); l — 0.5 hop scattering in the E/F layer with weak aspect sensitivity (class 
19) 
 
[Berngardt, 2023], it has been shown that the number of 
separable classes in radar data varies from 23 to 35 (see 
Figure 4); 35 was selected for convenience of further 
interpretation. 

Depending on the dataset for network training 
(three-fold cross-validation), the shape of the found 
classes may vary slightly: The adjusted Rand index be-
tween the model predictions is 0.936–0.967 for the EKB 
radar, and 0.897–0.937 for the MAGW radar. Using 
three versions of the trained model, we have constructed 
and analyzed the ensemble voting classification model. 
The cases when all the three models did not predict an 
identical class for the data were combined into a sepa-

rate class, interpreted as an uncertain prediction result. 
The proportion of such data is relatively small (10 %), 
which indicates a high continuity of the results of each 
network and the possibility of their separate use. 

We have analyzed the identified 35 observable sig-
nal classes and preliminarily interpreted each of these 
classes. It has been shown that 19 classes can be inter-
preted from the physical standpoint (13 types of iono-
spheric scatter and six types of ground scatter), the rest 
include high velocities and spectral widths (~1000 m/s). 
We have found the parameters that most strongly affect 
the determination of each class, and it has also been 
shown that the most important parameters are the scat-
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tering height and the elevation angle of signal propaga-
tion at the scattering point. The spectral width of the 
signal and its propagation mode are among the least 
important parameters (see Figure 9). 

We have illustrated range-time distributions of these 
signals at the EKB and MAGW radars (see Figures 6, 7), 
which demonstrate that many interpreted classes have the 
expected diurnal variation. 

The results of the analysis of MAGW radar data for 
2023, not used in model training, have shown the success-
ful performance of the model under more disturbed iono-
spheric conditions and have revealed limitations of this 
model: the expected dependence on the quality of calcula-
tions of the radio wave propagation trajectory leading to a 
decrease in classification quality at ranges above 2000 km 
(see Figures 10, 11). 

The proposed method allowed us to automatically 
classify ~85 % of all data received in the main lobe of 
the antenna pattern of the EKB and MAGW radars in 
quiet 2021 and ~75 % of MAGW data for the first half 
of disturbed 2023. The parameters of the three versions 
of the trained model are available at 
[https://github.com/berng/WrappedClassifier/tree/master/v.
3.0]. The results of real-time signal processing by the 
proposed algorithm are available at 
[http://sdrus.iszf.irk.ru/node/107]. 

The research was financially supported the Russian 
Science Foundation (Grant No. 24-22-00436) 
[https://rscf.ru/project/24-22-00 436/]. 

 
Appendix 1 

ALGORITHM OF ESTIMATING 
PARAMETER SIGNIFICANCE 

To determine the set of the most important parame-
ters for classification, we use the following (greedy) 
modification of the permutation algorithm: 

1. Select the hidden class C that we want to analyze. 
2. For the entire dataset x ij, predict hidden classes 

for all available data. 
3. Select a part from the dataset x ijC whose predic-

tive class corresponds to the selected class (xijC: Predic-
tion(xijC)=C), then work only with it; 

4. Create an empty set of important features F=Æ ; 
5. If some features were previously identified as im-

portant, permutate each corresponding column inde-
pendently, and add unimportant features to the dataset 
without permutation: 

( ),

:
.

:
i jC

i jC
i jC

i F x
x

i F permutate x

∉′ = 
∈

  

6. Calculate the classification quality for the dataset 
, ,i jCx′ corresponding to this permutation as the propor-

tion of correct predictions of this class in the dataset xijC 
of step 3 (with respect to the original full dataset xij of 
step 2, we actually calculate the Precision metric with 
respect to the selected class C): 

( )( )
( )

.
i jC

F
i jC

Dim Prediction x C
Q

Dim x

′ =
=   

7. Choose the lth column in the dataset i jCx′  and 
calculate the permutation quality from it. 
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,
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i l permutate x

Dim Prediction x C
Q

Dim x

′≠=  ′=

=
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8. Calculate the reduction of quality: 

, .l F F lQ Q Q∆ = −   
9. Select the column lopt, in which the reduction of 

quality ΔQl during permutation is the largest, 
( ).opt ll argmax Q= ∆   

10. If this column matches one of the previously se-
lected columns ( optl F∈ ) or if there is no reduction in 
quality (the lowest quality found is no worse than the 

quality obtained in step 6, ( )0
optlQ∆ ≤  — end the 

search. 
 
11. In all other cases, add the found column to the 

list of important parameters ( )optF F l= ∨ and return to 
step 5. 

The resulting set of F values is a set of parameters 
that significantly affect the prediction result of class C. 

The algorithm is a search algorithm with greedy ad-
dition of features and has a stopping criterion that al-
lows us to account only for significant features whose 
permutation worsens the classification quality. 

For greater statistical significance of the method, the 
quality QF, QF,  l in steps 6, 7 is defined not as the quality 
Q determined from all elements of the datasets 

, ,i jCx′ ( )
, ,l

i jCx  but as the 95 % interval of values of this 
quality [min(Q), max(Q)], using a set of random sam-
ples (with repetitions) from these datasets of the same 
length (bootstrap method). The reduction in quality 

optlQ  in this case (step 8) is estimated as the difference 
between the upper bound of the confidential interval on 
the parameter being tested (step 7) and the lower bound 
of the confidential interval on the dataset of the previous 

step (step 6): ( ) ( ),min max .l F F lQ Q Q= − This algo-
rithm allows us to identify more important parameters 
with an approximate significance level of 0.05, and re-
ject statistically less significant parameters. 

 
Appendix 2 

EXPLANATION OF SOME 
TERMS 

• argmax(f(x)) is a function that returns the value 
of the argument x such that the function f(x) is maxi-
mum; for vectors, the number of the coordinate whose 
value is maximum; 
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• ( )SoftMax x




 is a vector-valued function com-
mon in machine learning that returns a vector with 
nonnegative features according to the formula 

( ) ( )
( )

exp
;

exp
i

i
jj

x
SoftMax x

x
=
∑



  

• ( )BatchNormalization x


 —  superposition of 
two linear transformations x : the first returns a value 
with zero mean and unit variance at the training dataset, 
and the second returns coefficients that are fitted during 
the training to improve the quality of model training; 

• The width of the neural network layer is the 
number of neurons in this layer; 

• The fold is a part of a dataset when learning with 
the cross-validation method. The entire dataset is gener-
ally divided into equal parts (folds); 

• The scattering regions at propagation hops 0.5, 1, 
1.5, etc. are explained in Figure 13. Boundaries of sepa-
ration are the region of reflection from the ionosphere 
and the ground scatter region — the places where the 
vertical radio wave vector component changes sign. 

 
Figure 13. Explanation of the hop scattering regions 
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