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Abstract. We present the results of calculation of 

photodetachment rates for negative ions in the D layer 

of the ionosphere, using recent photodetachment cross-

section measurements. The calculations have been made 

for the standard atmosphere by means of the TUV (Ter-

restrial UltraViolet) code. We have obtained depend-

ences of the photodetachment rates on altitude and solar 

zenith angle. The nonlinear nature of these dependences 

causes similar variations in the role of the photode-

tachement processes with altitude and solar zenith angle 

as compared to other processes in the middle atmos-

phere and the lower ionosphere, especially under termi-

nator conditions. Calculations with solar spectrum for 

2011–2020 for the summer/winter solstice and the 

spring/autumn equinox have shown no quantitative dif-

ference between the photodetachement rates for ions in 

the D layer of the ionosphere. 

Keywords: ionosphere, D layer, photodetach-

ment. 

 

 

INTRODUCTION 

Geophysicists worldwide agree that the D layer of the 

ionosphere is underexplored to date despite being studied 

for decades. There is a plenty of reasons for this situation. 

They are analyzed and discussed in detail, for example, in 

[Danilov and Vlasov, 1973; Mitra, 1977; Whitten and 

Poppoff, 1977; McEwan 1975; Brassier and Solomon, 

1987; Kozlov, 2021; Kozlov, 2022; Bekker, 2022].  

One of the main reasons is the lack of knowledge 

about reaction rate constants for many photochemical 

reactions, including the rate of photodetachment  х  

of electrons from negative ions. Available articles use 

the same quantities of  х  [s
-1

] [Mitra, 1977]: 

     
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The literature pays almost no attention to determin-

ing (theoretical or experimental) the photodetachment 

rate. No references are made to the well-known works 

[Hasted, 1965; Massey, 1979; Smirnov, 1978; Smirnov, 

1983], where the photodetachment from negative ions is 

considered as a physical process, though using obsolete 

data. There is usually no information about the depend-

ence of  х  on the solar zenith angle, altitude H, and 

solar activity, hence the need for knowing these de-

pendencies is evident. This can lead to inaccuracies in 

simulating the D-region since negative ions at H<90 km 

play a fairly prominent role. 

In this paper, we attempt to eliminate the above 

shortcomings for the primary negative ions О
–
 and 

2
O


. 

Unfortunately, we cannot make such calculations for 

complex cluster negative ions 2 2 2CO , NO ,O    because 

of the absence of information on these ions, in particular 

reliable photodetachment cross-sections.  

 

INITIAL DATA 

The usual formula for calculating  х  is: 

     ,
n

Х Н d





       , 

where λn is the threshold solar emission wavelength at 

which the photodetachment from 2O
 and O occurs; 

    is the photodetachment cross-section;  , H   is 

the solar flux at a given altitude H at a wavelength . 

The value  On

  is well-known and is equal to 855 

nm (1.45 eV). There is a spread in values for 2O
; how-

ever, according to [Hasted, 1965] we can take 

 2O 2480 nm  (0.5 eV). 

Figure 1 shows the  values we use [Janalizadeh, 

Pasco, 2020]. Estimating  , H  requires specifying 

the solar spectrum for λ≤800 nm and the model of the 

atmosphere through which emission propagates.  

We use two solar spectra (Figure 2). The first spec-

trum was taken from World Meteorological Organiza-

tion [WMO, 1985]. It is climatic (mean). The second 

spectrum is available in [SSI, 2020] with solar activity 

variation in 11-year cycle (the curve in Figure 2 corre-

sponds to 2018). We calculate radiation transfer for the 

standard atmosphere by the pseudo-spherical four-flux  
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Figure 1. Photodetachment cross-sections for O2
– and O– 

according to Janalizadeh and Pasko [2023]. 

 

Figure 2. Solar spectra used in photodetachment calculation 

 

method of discrete ordinates [Stamnes et al, 1988]. Al-

bedo is 0.1 and aerosol fraction is 0.25 according to 

[Elterman, 1968]. 

Final fluxes  , H   are evaluated by the TUV 

code (v. 5.3.2) [Madronich, 1993, 1998] for H=60–90 

km with a 5 km step. The solar zenith angle  varies 

within 60–100°. This yields maximally unified results 

suitable for numerical simulation in any set of coordi-

nates, season, and UT. 

 

RESULTS AND DISCUSSION  

The photodetachment rates  О  and  2О  

depending on H and  for the modern spectrum 

[NOAA, 2020] are listed in Tables 1 and 2. Figures 3 
and 4 plot rates of photodetachment from О

–
 for the 

spectrum [NOAA, 2020] as function of the solar zen-
ith angle for two altitudes bounding the D layer and 
as function of altitude (see Figure 4) for three zenith 

angles. The dependences for  2О  and for the spec-

trum [WMO, 1985] are qualitatively the same, differ-
ing only in magnitude. Analysis of the results allows 
the following conclusions: 

 

 

Figure 3. Photodetachment rate for negative ion О– at alti-

tudes of 60 and 80 km for the spectrum (NOAA, 2020). 
 

 

Figure 4. Altitude dependence of О– photodetachment 

rate at 89.5°, 95.5°, and 97.5° zenith angles for the spectrum 

[NOAA, 2020]  

 

а) At 80  , photodetachment rates are constant 

at any H under any level of solar activity (Figure 3). 

The values   1О 1.29 s ,      1

2О 0.477 s    cal-

culated for the spectrum [WMO, 1985] are quite close 

to the commonly used values (see Introduction). 

However, for the current spectrum [NOAA, 2020], 

which we consider to be more reliable, 

  1О 7.41 s ,      1

2О 2.44 s ,    which far exceed 

the previous values. 

b) The χ values at which it is necessary to take in-

to account the decrease in  1Х   depends only on 

H. This effect starts at H=60 km and gradually prop-

agates to higher altitudes as χ increases.  

c) Additional calculations to check the dependence 

 Х   on solar activity in the 11-year cycle and on 

season, made using the database of spectra [NOAA, 

2020] for 2010–2020, have shown that year- to-year 

and seasonal variabilities of  О  and  2О  under 
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Table 1  

Photodetachment rate for O
–
 [s

–1
]

χ, degrees 60 km 65 km 70 km 75 km 80 km 85 km 90 km 

<80 2.44 2.44 2,44 2.44 2.44 2.44 2.44 

88.5 2.41 2.43 2.44 2.44 2.44 2.44 2.44 

89.5 2.41 2.43 2.44 2.44 2.44 2.44 2.44 

90.5 2.39 2.42 2.43 2.44 2.44 2.44 2.44 

91.5 2.37 2.40 2.43 2.43 2.44 2.44 2.44 

92.5 2.34 2.37 2.40 2.43 2.44 2.44 2.44 

93.5 2.28 2.33 2.36 2.40 2.42 2.43 2.44 

94.5 2.12 2.24 2.30 2.34 2.38 2.41 2.43 

95.5 1.55 1.91 2.13 2.24 2.30 2.34 2.38 

96.5 0.28 0.80 1.38 1.80 2.06 2.21 2.28 

97.5 0.009 0.036 0.12 0.40 0.94 1.48 1.88 

98.5 0.00 0.00 0.00 0.005 0.03 0.095 0.31 

99.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table 2  

Photodetachment rate for O2
–
 [s

–1
] 

χ, degrees 60 km 65 km 70 km 75 km 80 km 85 km 90 km 

<80 7.4 7.4 7.4 7.4 7.4 7.4 7.4 

88.5 7.38 7.4 7.4 7.4 7.4 7.4 7.4 

89.5 7.38 7.39 7.4 7.4 7.4 7.4 7.4 

90.5 7.36 7.39 7.4 7.4 7.4 7.4 7.4 

91.5 7.34 7.37 7.39 7.4 7.4 7.4 7.4 

92.5 7.3 7.34 7.37 7.39 7.4 7.4 7.4 

93.5 7.2 7.29 7.33 7.37 7.39 7.4 7.4 

94.5 6.78 7.11 7.24 7.31 7.35 7.38 7.4 

95.5 5.11 6.15 6.80 7.11 7.24 7.31 7.35 

96.5 1.24 2.89 4.62 5.82 6.60 7.03 7.21 

97.5 0.06 0.22 0.60 1.64 3.29 4.91 6.06 

98.5 0.00 0.00 0.00 0.03 0.20 0.52 1.34 

99.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

sunlit conditions do not exceed 1 %. 
d) At sunrise and sunset, considering the depend-

ences  О  and  2О  on  becomes essential for 

studying the quiet and disturbed D layer. 
 

CONCLUSIONS 

The negative ions 2O
 and О  are primary in the 

complex chemical chain of their transformation into 

cluster negative ions. The use of the  О  and  2О  

coefficients, calculated in this work for current solar 

spectra [NOAA, 2020] when simulating the D layer, 

will lead to a decrease in the negative ion density and to 

an increase in the rate of the electron density ne varia-

tion, which will primarily have an effect on propagation 

of LF and VLF waves. This should be taken into ac-

count when interpreting radio monitoring data. Thus, 

the new coefficients of photodetachment of electrons 
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from 2O  and О  will improve the accuracy of D-layer 

models. 
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