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Abstract. We solve the problem of recognizing ge-
omagnetic storms from time series of matrix observa-
tions with the URAGAN muon hodoscope, using deep 
learning neural networks. A variant of the neural net-
work software module is selected and its parameters are 
determined. Geomagnetic storms are recognized using 
binary classification procedures; a decision-making rule 
is formed. We estimate probabilities of correct and false 
recognitions. The recognition of geomagnetic storms is 
experimentally studied; for the assigned Dst threshold 
YD0=–45 nT we obtain acceptable probabilities of cor-

rect and false recognitions, which amount to β=0.8212 
and α=0.0047. We confirm the effectiveness and pro-
spects of the proposed neural network approach. 

Keywords: geomagnetic storms, recognition, neural 
networks, probabilities of correct and false recognitions, 
matrix observations, muon hodoscope. 

 
 
 

 

 

INTRODUCTION 
The paper discusses the recognition of geomagnetic 

storms (GMS) through digital processing of matrix data 
sets from the muon hodoscope (MH) URAGAN, using 
deep learning neural networks (DLNN). We interpret 
the recognition as a problem consisting in making deci-
sions about the presence or absence of GMS for a given 
moment in time from MH observations.  

The GMS recognition based on neural digital pro-
cessing of matrix MH observations is an urgent scien-
tific problem in solar-terrestrial physics. 

Geomagnetic disturbances are generated by the im-
pact of plasma formations from solar coronal mass ejec-
tions on Earth's magnetosphere. GMS are geomagnetic 
disturbances whose amplitudes are, on average, higher 
than a given one. 

As is known, activity of the geomagnetic field is 
characterized by geomagnetic indices. One of the most 
common is the hourly Dst index, introduced and de-
scribed in [Suigiura, 1964]. It is determined from the 
geomagnetic field vector components from four longi-
tudinally-spaced equatorial magnetic observatories and 
is calculated by averaging with 1-hour discreteness. Dst 
indices are measured in nanotesles: for the undisturbed 

magnetosphere Dst= +20÷–40 nT; for GMS, –50÷–150 
nT; in exceptional cases, they go beyond the given 
range. The time series of the Dst indices was taken 
from the WDCG (World Data Center of Geomagnetism, 
Kyoto) website [https://wdc.kugi.kyoto-u.ac.jp]. 

Neural networks are often used to solve problems of 
solar-terrestrial physics [Barkhatov, 2010; Bernhardt, 
2022]. A number of publications in the subject area of 
interest, which are related to neural networks, are dis-
tinguished by information sources, neural network 
structures, versions of problems, and possibilities for 
obtaining solutions without constructing any physical 
models, which can be successfully applied to complex 
geophysical systems.  

The works [Pallochia et al., 2006; Lundstredt, 1997] 
are devoted to the neural network analysis of GMS 
based on solar wind data and multilayer perceptrons. 
Gruet et al. [2018] presents a method combining a re-
current NN with short-term memory and a Gaussian 
process model for evaluating characteristics of Dst indi-
ces. Stepanova and Perez [2000] use a multilayer per-
ceptron to examine Dst variations several hours ahead. 
In [Efitorov et al., 2018; Dolenko et al., 2005; My-
agkova et al., 2021], the possibilities are explored of 
employing time series of geomagnetic Dst indices and 
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their relationships with parameters, as well as methods 
of NN machine learning with classical perceptrons and 
recurrent networks. 

In [Belov et al., 2022; Getmanov et al., 2022a], an 
approach is described which consists in using scalar 
time series of MH observations and convolutional NN 
for analyzing GMS. Implementation of the proposed 
approach to GMS recognition using time series of ma-
trix MH observations and deep learning NN aims to 
demonstrate its efficiency and possible future prospects. 

 
1. OBSERVATIONS  

WITH THE URAGAN MUON 
HODOSCOPE AND GM 

 RECOGNITION PROBLEM  
 SOLVING BASED ON  
 NN TECHNOLOGIES 

In this paper, the GMS recognition is based on ob-
servations with the muon hodoscope URAGAN [Yashin 
et al., 2015], designed at MEPhI. Muons are elementary 
particles formed due to nuclear reactions between rela-
tivistic cosmic protons and individual atomic nuclei, 
which are part of Earth's upper atmosphere [Murzin, 
2007; Astapov et al., 2014]. The muon hodoscope 
URAGAN is a computer-aided measuring device that 
determines the muon flux (MF) by counting the number 
of muons incident on the MH aperture for a given sys-
tem of solid angles and a specified time discrete. The 
time-varying estimated MFs obtained from MH obser-
vations provide information about extreme heliospheric 
events and possible upcoming GMS. 

The results of counting the number of muons with 
MH are formed into a time series of primary initial ma-
trix MH observations X(i, j, Trg, Tk), consisting of Pois-
son numbers i=1, ..., N1, j=1, ..., N2, N1=90, N2=76; T is 
the specified time discrete; k is the time index; general-
ly, T  =1/60 hr (1 min); Trg=58.5 s is the muon detection 
(counting) interval length. 

The azimuth and zenith indices i,j define the system 
of solid angles φi=Δφ(i, 1), ϑj=δϑ(j–1), Δφ=1°, δϑ=4°, 
i=1, ..., N1, j=1, ..., N2 in which MF is estimated. The 
collected muons corresponding to φi, ϑ j are placed dis-
cretely in (i, j) cells for MH matrices. 

The primary 1-minute normalized matrix MH obser-
vations X(i, j, Tk) are formed from initial MH observa-
tions and determine the number of detected particles for 
the indices i, j reduced to 1 s, 

( ) ( )rg rg, , , , , / , 1, 2, ....k kX i j T X i j T T T k= =  (1) 

The time series of secondary hourly normalized matrix 
MH observations is derived from minute observations (1) 
by averaging them over a 60-min time interval T0=60T. 

( ) ( )
( )

( )

( ) ( ) ( )

2

1

0

1 2

, , , , / 60,

1 60 1 , 60 , 1, 2, ... .

k n

k
k k n

X i j T n X i j T

k n n k n n n
=

=

= + − = =

∑  (2) 

We deal with modulation and noise disturbances in 
time series of hourly normalized matrix MH observa-

tions X(i, j, T0n) (2) taken from the Data Base of Muon 
Hodoscope MEPhI [https://www.nevod.mephi.ru/]. The 
time series was formed from matrix MH observations 
with an initial index n=1corresponding to January 01, 
2013, 00:00 UT. 

Figure 1 presents a 2D image of the hourly normal-
ized MH observation matrix X(i, j, T0n0), i=1, ..., N1, 
j=1, ..., N2, obtained from the given time series for 
n0=50300. The 2D function X(i, j, T0n) is seen to con-
tain significant modulations and noise. Matrix elements 
for zenith angles with j≈25÷30 take maximum values; 
for zenith angles with j≈1÷2, 75÷76, minimum values 
differing tenfold. Azimuth modulations for X(i, j, T0n0) 
are much less than zenith modulations. 

Figure 2 plots a 1D function of average hourly MH 
observations S(T0n), which was calculated on a 1-month 
period with n1=50100, n2=50800 from  

( ) ( )
1 2

0 0 1 2
1 11 2

1 , , , .
N N

i j
S T n X i j T n n n n

N N = =

= ≤ ≤∑∑  (3) 

There are ~30 periods of noisy diurnal oscillations 
of the S(T0n) function here. In the GMS catalog 
[http://www.izmiran.ru/ionosphere/weather/storm.2023], 
we can find information that a rather complex geomag-
netic situation took place in the 1-month period — three 

 
Figure 1. A 2D image of hourly normalized MH observa-

tion matrix X(i, j, T0n0) 
 

 
Figure 2. One-dimensional function of average hourly MH 

observations S(T0n)  
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Dst storms occurred. Figure 2 indicates that MH obser-
vations respond in a certain way to GMS. Note that min-
imum and maximum S(T0n) differed by only ~1.9 %. 
We can deduce that the recognition of modulations from 
GMS in modulated and noisy time series of matrix MH 
observations by the use of traditional time-frequency 
technologies is largely problematic. 

Two solutions of the problem of GMS recognition are 
allowed which are based on time series of matrix MH ob 

servations and NN technologies. The former involves 
the formation of time series of S(T0n) from (3) from matrix 
MH observations. This solution [Belov et al., 2022; Get-
manov et al., 2022a] can reduce computer requirements for 
NN implementation, but by decreasing the efficiency of 
GMS recognition. The second implies the direct use of 
time series of matrix MH observations, which requires 
high-performance computers capable of increasing the 
efficiency of GMS recognition for NN. In this case, the 
second solution is taken as a basis. 

Note that the publications [Chinkin et al., 2019, Get-
manov et al., 2022a] have addressed the problems of de-
tecting the so-called local anisotropies for MF, which we 
have used as the methodological framework for this paper. 

 
2. ALGORITHM OF CALCULATION 

OPERATIONS IN GMS  
RECOGNITION PROBLEM  
SOLVING; ResNet34  

The algorithm for solving the GMS recognition prob-
lem is based on the assumption that there is a complex 
noisy relationship between MH observations and Dst indi-
ces. In the paper, we construct a model of the relationship 
between Dst indices and MH observations, using the 
deep learning NN. 

We employ the time series of matrix MH observations 
X(i, j, T0n)=XM(n) and the time series of scalar Dst indices 
YD(n), which are formed in the international reference time 
scale UTC. Sampling is carried out for T0n. 

MH observations XM(n) and Dst indices YD(n) are de-
termined in a nine-year period. At the training stage with 
1≤n≤nf 0, nf 0=62128, MH observations and Dst indices are 
used; the result of this stage is the NN model. At the testing 
stage, MH observations with nf 0+1≤n≤nf 1, nf 1=70128 are 
employed; at this stage, the learning stage of the construct-
ed NN model is controlled. At the validation stage, MH 
observations are applied to nf1+1≤n≤n f, n f =78888; model 
estimates of Dst indices are calculated ( )DY n  by the NN 

model and only from the dataset XM(n), Dst indices are 
used only to assess the probabilities of recognizing GMS. 

The algorithm of the GMS recognition problem 
solving consists of four stages. 

At stage 1, preliminary digital processing is performed 
for the initial time series of matrix MH observations XM(n) 
and the time series of Dst indices YD(n); they are filtered to 
eliminate low-frequency and high-frequency noise and are 
scaled up to ensure the commensurability of variables nec-
essary for effective NN training. The preprocessing results 
are denoted as XM1, XM2, YD1. 

At stage 2, NN training and testing are implement-
ed. We use the matrix time series XM1 and the training 
scalar time series YD1, 1≤n≤nf 1. The NN model is 
formed and its quality is assessed. 

At stage 3, validation stage, Dst indices are estimated 

DY  . Here, we employ the variables XM2 on the interval 
nf 1+1≤n≤nf and the NN model constructed at the previous 
stage. 

At stage 4, the decision-making procedure for GMS 
recognition is implemented by comparing the calculated 
model estimates of Dst indices ( )DY n  with the assigned 
threshold YD0.  

Figure 3 shows an enlarged diagram of the neural 
network algorithm for calculation operations with the 
above variables, which explains the GMS recognition 
problem solving. 

The results of the formulated GMS recognition prob-
lem solving, which are related to the digital processing 
of a large amount of data, have been obtained using 
cloud technologies. The MEPhI Supercomputer Center 
was employed to perform resource-intensive computing 
[https://it.mephi.ru/hpc/perfomance], required for DLNN. 

A DLNN version based on the Python programming 
language and the PyTorch module library was developed. 
We examined the following network software modules: 
EfficientNet [https://arxiv.org/abs/1905.11946/], VGG 
[https://arxiv.org/abs/1409.1556v6)], DenseNet [http 
s://arxiv.org/abs/1608.06993v5], Inception-v3, and Res-
Net [https://arxiv.org/abs/1512.00567v3] from this li-
brary. The network software module ResNet and its mod-
ification ResNet34 were taken for implementation. This 
module has a high accuracy and a small number of 
trained parameters as compared to other modules men-
tioned above. ResNet34 was chosen due to the fact that in 
the studies of training of these neural networks this mod-
ule was in second place, working without augmentation 

 
Figure 3. Diagram of the algorithm of calculation operations for solving the GMS recognition problem 

78 

https://it.mephi.ru/hpc/perfomance
https://arxiv.org/abs/1905.11946/
https://arxiv.org/abs/1409.1556v6
https://arxiv.org/%0babs/1608.06993v5
https://arxiv.org/%0babs/1608.06993v5
https://arxiv.org/abs/1512.00567v3/


Recognition of geomagnetic storms 

 
[https://arxiv.org/pdf/2107.07699.pdf]. ResNet34 is de-
scribed in general at [https://arxiv.org/abs/1512.03385]. 

Dimension of the input matrix package Δn was spec-
ified by analyzing the results of preliminary computa-
tional experiments with NN ResNet34 and available 
MH observations. At the NN output, model estimates of 
Dst indices were developed DY   which were then applied 
to the GMS recognition problem. 

 
3. TRAINING, TESTING,  
 VALIDATION, AND QUALITY 
 METRICS 

 
Characteristics 
The selected NN was trained to calculate the optimal 

weight coefficients of the NN model. The gradient de-
scent search algorithm Adam was used; the algorithm 
parameters αE=0.001, β1=0.9, β2=0.999 were taken; the 
default value was ε=10–8 from [https://arxiv.org/pd 
f/1412.6980.pdf]. Parameter αE is the learning rate, β1 is 
the exponential decay for estimating the first moment, 
β2 is the exponential decay for estimating the second mo-
ment, ε is the parameter added to the denominator to im-
prove numerical stability, used to control the gradient de-
scent procedure [https://pytorch.org/docs/stable/generated/ 
torch.optim.Adam.html; Ba, Kingma, 2015]. 

The number of free parameters of the implemented 
learning model was 21.5 millions — this number was 
calculated by code, namely by summing up the number 
of trained parameters of each block of the model. The 
volume of the training dataset was N1× N2× the total 
number of hours in the dataset — obviously, the volume 
of this dataset for training significantly exceeded the 
given number of parameters. 

Testing was carried out to determine the quality of 
the NN model constructed at the training stage. This 
stage employed a testing dataset other than the training 
and validation datasets. 

The constructed NN model was validated by calcu-
lating model estimates of Dst indices DY  . A time series 
was formed from them and binary classification proce-
dures were applied to its elements to recognize GMS 
[https://www.learndatasci.com/glossary/binary-
classification/]. We compared ( )DY n  with YD0. 

According to conditions of the problem, at the valida-
tion stage the initial Dst indices were used only for nu-
merically estimating the probabilities of recognizing 
GMS. In this regard, from the inequalities 

( )D D0 ,Y n Y≤  1 1f fn n n n+ ∆ + ≤ ≤  (4) 

we calculated the number of indices with GMS events 
N1,GMS and the number of indices without GMS events 
N0,GMS. 
We calculated the number of correct GMS recognitions 
NR,GMS and the number of false ones NF,GMS, taking into 
account that in this case it was known in advance 
whether there was or was not a GMS event for each n. 

We introduced the probabilities of β correct and α 

false GMS recognitions in the form of the following 
obvious formulas 

R, ГМБ 1, ГМБβ / ,N N=  F, ГМБ 0, ГМБα / .N N=   

Error function. The NN model's parameters were 
optimized using error function values. In general, for 
regression problems we took a function designated as 
RMSE [Chen et al., 2022] and representing the root-
mean-square error, the difference between model esti-
mates ( )DY n  and actual variables, for the error function 

( )D .Y n  

( )( )
( ) ( )( )

1

1

2

D D

1/

.
f

f

f f

n

n n n

RMSE n n n

Y n Y n
= −D

= − − D ×

× −∑ 

  

Computational experiments have shown that the first-
order Adam gradient optimization method, we adopt 
here, for this loss function worked satisfactorily in prac-
tice and set apart from other stochastic optimization 
methods. This method is easy to implement, computa-
tionally effective, and well suited for problems with 
large amounts of data with convergence comparable to 
the best known results in convex optimization proce-
dures. 

The training was stopped through visual analysis of 
error function values when the RMSE plot moved to a 
plateau; at the same time, testing implemented control 
over the absence of retraining. 

Quality metrics. We have determined the recognition 
quality metric by analogy with the Recall metric from 
[https://en.wikipedia.org/wiki/Binary_classification]. 
Taking into account the formulation of the problem to 
be solved, the quality metric was taken as  

( )0 α, β β 1 α,G = + −  (5) 

whose content is completely transparent from a physical 
point of view. It follows from the last expression that 
with increasing probability β and decreasing probability 
α, the quality metric G0(α, β) increases. 

The G0 binary classification quality metric is usually 
applied to the so-called balanced data distributed evenly. In 
case of a possible data imbalance, this metric greatly dis-
torts the actual quality of the classification. It is worthwhile 
examining the solution of the proposed problem for com-
parison on the basis of the G1 metric, which is weakly 
sensitive to data imbalance. According to 
[https://helenkapatsa.ru/otsienka_f1], G1(α, β) is written as  

( ) ( ) ( )
( ) ( )( )

1 α, β 2 α, β α, β /

/ α, β α, β ,

G A R

A R

=

+
 (6) 

where 

( ) ( )
( ) ( )
α, β / ,

α, β / ,
β, 1 α, 1 β, α.

A TP TP FP

R TP TP FN
TP NP FP FN

= +

= +

= = − = − =
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4. STOPPING THE TRAINING 
BASED ON THE RMSE METRIC; 
ESTIMATED PROBABILITIES 
OF CORRECT AND FALSE 
GMS RECOGNITION; 
CALCULATING G0, G1 QUALITY 
METRICS  

The training stage was stopped based on the error 
function calculations obtained from NN training. The 
error functions for the training and validation samples 
were designated as RMSE1(NE) and RMSE2(NE) respec-
tively, where NE is the number of epochs. Visual analysis 
of the calculated estimates was implemented. 

Figure 4 shows RMSE1(NE) calculated for the train-
ing stage dataset and RMSE2(NE) for the validation stage 
dataset. 

The visual analysis of the plots allowed us to  
1) decide on the optimum number of epochs for the 

training stage E 20N = , for the validation stage 

E 30N = ; 
2) conclude about the absence of the NN model re-

training.  
Probabilities of correct and false GMS recognition 

were assessed. The threshold YD0 was established and the 
time point with n for which GMS occurred was studied 
when comparing YD(n)≤YD0 from (4). The number of 
N1,GMS states with GMS was determined by counting the 
fulfillment of this inequality in the control period for 
nf1+Δn+1≤n≤nf, where Δn is the dimension of the input 
matrix package.  

We carried out the sum operation 

( )( )
1

1,GMS D0 D
1

,
f

f

n

n n n
N H Y Y n

= +D +

= −∑  (7) 

where H(x) is the Heaviside function H(x)=1, x≥0, 
H(x)=0, x<0. The number of N0,GMS states without GMS 
on the interval nf1+Δn+1≤n≤nf was found from 
N0,GMS=nf –n f1 –Δn–1–N1,GMS. 

We determined NR,GMS — the number of correct 
GMS recognitions from estimated Dst indices ( )DY n  
and β — estimated probability of correct GMS recogni-
tion, by summing and calculating the relation 

 
Figure 4. Estimated RMSE1(NE) and RMSE2 (NE) for 

training and validation stages 

( )( ) ( )( )
1

R,GMS D0 D D0 D
1

R,GMS

1,GMS

,

β .

f

f

n

n n n
N H Y Y n H Y Y n

N
N

= +D +

= − −

=

∑ 

 (8) 

N F,GMS — the number of false GMS recognitions 
and α — estimated probability of false GMS recognition 
were found as in (8) 

( )( ) ( )( )
1

F,GMS D D0 D0 D
1

F,GMS

0,GMS

,

α .

f

f

n

n n n
N H Y n Y H Y Y n

N
N

= +D +

= − −

=

∑ 

 (9) 

The quality metrics G0, G1 (5), (6) were calculat-
ed in the control period with 1 1f fn n n n+ ∆ + ≤ ≤  
from the dataset XM(n). For this purpose, we estimat-
ed the model Dst indices ( )D0Y n  and compared them 
with YD0. 

According to Section 3, we assigned the dimension 
of input matrix package Δn=60, which remains the 
same for calculations throughout the paper. We calcu-
lated discrete values of the recognition threshold 

( ) ( )D0 D1 D0 1 ,Y l Y Y L= + D − D1 70Y = −  nT,  

D0 5YD = nT, l=1, 2, ..., 9. We estimated β(YD0(l)) and 
α(YD0(l)) probabilities of correct and false GMS recog-
nition, using formulas (7)–(9) depending on YD0(l) pa-
rameters.  

Figure 5, a, b presents the results of calculations of 
estimated probabilities β(YD0) and α(YD0) depending on 
YD0. Obviously, the estimated probabilities increase with 
increasing threshold. The calculations have led us to 
conclude that for D070 50Y− ≤ ≤ −  nT the average prob-
ability of false GMS recognition α≈0.001, whereas the 
probability of correct recognition 0.575≤β≤0.75; for 

D0 37.5Y = −  nT, α≈0.02, β≈0.875; for 0 34.0DY = −  nT, 
α≈0.045, β≈0.91. 

Using estimated β(Y D0), α(Y D0), we evaluated met-
rics (5), (6) G0, and G1 depending on YD0. We plotted 
them and compared the metrics. 

Studying the estimated metrics in Figure 6, a, b has led 
us to the following conclusions: 1) the metrics G0 and G1 
turned out to be close differing by about a constant when 
comparing their dependence on the recognition threshold 
YD0; the possible assumption that the initial MH observa-
tions were unbalanced proved to be insufficiently accurate 
and contradicted the calculations of the metrics; 2) analyz-
ing positions of maxima on the plots of the metrics deter-
mined the optimum recognition threshold (in terms of G0 
and G1), which was D0 35Y ≈ −  nT. 

 
5. ESTIMATING MODEL  

Dst INDICES AND GMS  
RECOGNITION RESULTS 

We have chosen a six month period 2021.07.01–
2022.01.01, which is within the boundaries of the con-
trol period. Figure 7 displays real YD=YD(T0n) and model  
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Figure 5. Results of estimated correct β (YD0) (a) and false α(YD0) (b) GMS recognitions 
 

 
Figure 6. Metrics G0 (a) and G1 (b) as a function of the recognition threshold YD0 
 

 

Figure 7. Real YD(T0 n) and model ( )D0 0Y T n  Dst indices  
 

( )D0 D0 0Y Y T n=  Dst indices. For YD0=–45 nT, four GMS 
events occurred during the period of interest (marked 
with crosses in circles). 

The plot ( )D0 0Y T n  in view of YD0 shows that there are 

three correct GMS recognitions, one false (marked with 
minus in a circle) and one omission of correct GMS 
recognition. Using (7)–(9), we estimated the probabili-
ties of correct and false GMS recognitions. 

The results of calculations using the developed algo-
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rithm for a six-month time period, taking into account the 
assigned threshold YD0=–45 nT and the results of calcula-
tions with Figure 6, a, b, enabled us to make certain of 
obtaining acceptable estimates of the probabilities of cor-
rect and false recognitions: β≈0.8212 and α≈0.0047. 

Analysis of the algorithm for calculating the proba-
bilities of correct and false GMS recognitions and ex-
perimental study of the results of GMS recognition have 
led us to conclude that the proposed neural network 
approach proved to be largely effective and promising 
for problems of solar-terrestrial physics.  

The NN architecture we have proposed in this paper, 
based on time series of matrix MH observations, ex-
ceeds in efficiency the approach described in [Belov et 
al., 2022; Getmanov et al., 2022b] and based on the 
formation of scalar time series of function values (3) 
from matrix MH observations. . 

 
CONCLUSION 

1. The GMS recognition method we have developed 
in the paper by analyzing and processing time series of 
matrix observations with the muon hodoscope URA-
GAN, using deep learning NN, has proved to be effi-
cient.  

2. As a result of the research and computational ex-
periments, we have selected the NN architecture Res-
Net34 and the dimension of input matrix package 
Δn=60, which are most suitable for the problem consid-
ered. 

3. Using experimental studies of the proposed GMS 
recognition algorithms on the control dataset, we have 
obtained probability estimates characterizing the quality 
of GMS recognition. 

3.1. The results of calculations of the GMS recogni-
tion probabilities in the control period have allowed us 
to conclude that for the threshold YD0 =–45 nT, when the 
restriction condition for the probability of false recogni-
tion α=0.02 is met, the probability of correct recognition 
β=0.875. 

3.2. Digital processing of MH observations for the 
six-month control period has enabled us to estimate the 
probabilities of correct β=0.8212 and false α=0.0047 
GMS recognitions.  

3.3. Analysis of GMS recognition with quality met-
rics G0, G1 has allowed us to establish that the MH 
observations at hand are in balance and to assign a 
suitable recognition threshold D0 35Y = −  nT. 

4. The experimental study has revealed that the pro-
posed approach to the construction of DLNN, which is 
based on the use of time series consisting of MH obser-
vation matrices, is more effective than the approach 
described in [Belov et al., 2022; Getmanov et al., 
2022a], which was based on the formation of scalar time 
series of average hourly MH observations from matrix 
MH observations.  

5. The developed recognition method has shown 
promise and can be applied in many scientific and tech-
nical applications, for example, in the case of possible 
sudden absence (omission) of WDCG Dst indices, GMS 
recognition can be carried out using pre-built Dst index 

models operating only with MH observations, as well 
as, if necessary, short-term forecasting of GMS, which 
can be implemented by extrapolating MH observations. 
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